CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塑料废弃物热催化制备碳纳米管的研究进展

冯时宇 李洋 李凯 胡斌 刘吉 陆强

冯时宇, 李洋, 李凯, 胡斌, 刘吉, 陆强. 塑料废弃物热催化制备碳纳米管的研究进展[J]. 环境工程, 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
引用本文: 冯时宇, 李洋, 李凯, 胡斌, 刘吉, 陆强. 塑料废弃物热催化制备碳纳米管的研究进展[J]. 环境工程, 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017
Citation: FENG Shi-yu, LI Yang, LI Kai, HU Bin, LIU Ji, LU Qiang. PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 107-114. doi: 10.13205/j.hjgc.202104017

塑料废弃物热催化制备碳纳米管的研究进展

doi: 10.13205/j.hjgc.202104017
基金项目: 

国家自然科学基金(51922040);中央高校基本科研业务费专项资金(2020DF01)。

详细信息
    作者简介:

    冯时宇(1993-),男,博士研究生,主要研究方向为固体燃料高效热化学转化。fengshiyu1993@gmail.com

    通讯作者:

    陆强(1982-),男,博士,教授,主要研究方向为固体燃料高效热化学转化。qlu@ncepu.edu.cn

PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS

  • 摘要: 碳纳米管(CNTs)具有优异的理化特性,在多个领域拥有广阔的应用前景。然而,原料成本高等因素限制了其大规模生产与应用。废塑料年产量巨大,富含C、H元素,在催化热解过程中可产生大量CNTs生长所需的气态碳源,因而废塑料在热催化制备CNTs方面极具潜力。以塑料废弃物为原料制备CNTs,既可以降低CNTs的生产成本,又能够实现塑料废弃物的高效处置与高值化利用。梳理了近年来以废塑料为原料制备CNTs领域的相关文献,介绍了CNTs的生长机理,概述了塑料种类、催化剂及反应条件等因素对CNTs产率与品质的影响,并对废塑料热催化制备CNTs进行展望,以期为废塑料资源化利用提供理论参考。
  • [1] WEN Y L, KIERZEK K, CHEN X C, et al. Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world" mixed waste plastics toward excellent-performance supercapacitors[J]. Waste Management, 2019, 87:691-700.
    [2] WANG J Q, SHEN B X, LAN M C, et al. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics:The influence of catalyst and reaction pressure[J]. Catalysis Today, 2020, 351:50-57.
    [3] 赵传靓,闫仪,苏俊堂,等. 水体环境中纳米塑料的危害与检测研究进展[J]. 环境工程,2019,37(12):64-70.
    [4] 尹凤福,闫磊,韩清新,等. 近红外光谱(NIR)分选技术在塑料分选领域的应用[J]. 环境工程,2017,35(12):134-138.
    [5] SOLIS M, SILVEIRA S. Technologies for chemical recycling of household plastics:a technical review and TRL assessment[J]. Waste Management, 2020, 105:128-138.
    [6] ALI S, REHMAN S, LUAN H Y, et al. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination[J]. Science of the Total Environment, 2019, 646:1126-1139.
    [7] HAN T, NAG A, CHANDRA M, et al. Carbon nanotubes and its gas-sensing applications:a review[J]. Sensors and Actuators A:Physical, 2019, 291:107-143.
    [8] RATHER S U. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites:a review[J]. International Journal of Hydrogen Energy, 2020, 45(7):4653-4672.
    [9] FARAVELLI T, PINCIROLI M, PISANO F, et al. Thermal degradation of polystyrene[J]. Journal of Analytical & Applied Pyrolysis, 2001, 60(1):103-121.
    [10] 马川. 典型溴系阻燃电子塑料的热解-催化提质实验研究[D]. 武汉:华中科技大学,2017.
    [11] 丁明洁,陈思顺,赵书伟,等. 论聚烯烃裂解反应中的油化效果增强效应[J]. 环境保护科学,2005,31(4):38-40.
    [12] WANG Y, GAO X F, QIAN H J, et al. Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes[J]. Carbon, 2014, 72:22-37.
    [13] WANG J K, DENG X G, ZHANG H J, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 86:24-35.
    [14] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. Chem Sus Chem, 2011, 4:824-847.
    [15] KUMAR M, ANDO Y. Chemical vapor deposition of carbon nanotubes:a review on growth mechanism and mass production[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):3739-3758.
    [16] ZHOU L, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B:Environmental, 2017, 208:44-59.
    [17] SCHAPER A K, HOU H Q, GREINER A, et al. The role of iron carbide in multiwalled carbon nanotube growth[J]. Journal of Catalysis, 2004, 222(1):250-254.
    [18] 姚丁丁. 废塑料催化热解制备富氢气体和碳纳米管的实验研究[D]. 武汉:华中科技大学,2018.
    [19] LIU B L, TANG D M, SUN C H, et al. Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(2):197-199.
    [20] LIN M, TAN J P Y, BOOTHROYD C, et al. Dynamical observation of bamboo-like carbon nanotube growth[J]. Nano Letters, 2007, 7(8):2234-2238.
    [21] GONG J, LIU J, WAN D, et al. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Applied Catalysis A:General, 2012, 449:112-120.
    [22] OHTA Y, OKAMOTO Y, IRLE S, et al. Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster[J]. Carbon, 2009, 47(5):1270-1275.
    [23] OHTA Y, OKAMOTO Y, PAGE A J, et al. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle[J]. ACS Nano, 2009, 3(11):3413-3420.
    [24] OHTA Y, OKAMOTO Y, IRLE S, et al. Rapid growth of a single-walled carbon nanotube on an iron cluster:density-functional tight-binding molecular dynamics simulations[J]. Acs Nano, 2008, 2(7):1437-1444.
    [25] PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(3):621-628.
    [26] PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. Thermal annealing of SiC nanoparticles induces SWNT nucleation:evidence for a catalyst-independent VSS mechanism[J]. Physical Chemistry Chemical Physics, 2011, 13(34):15673-15680.
    [27] LIU H P, TAKAGI D, CHIASHI S, et al. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):4068-4073.
    [28] 张如范,张莹莹,谢欢欢,等. 水平阵列碳纳米管的可控制备及优异性能[J]. 中国科学(化学),2015,45(10):979-1009.
    [29] PANAHI A, WEI Z X, SONG G C, et al. Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics[J]. Industrial & Engineering Chemistry Research, 2019, 58(8):3009-3023.
    [30] ABOUL-ENEIN A A, AWADALLAH A E, ABDEL-RAHMAN A, et al. Synthesis of multi-walled carbon nanotubes via pyrolysis of plastic waste using a two-stage process[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(7):443-450.
    [31] VEKSHA A, GIANNIS A, CHANG V. Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials:Effects of feedstock and temperature[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:16-24.
    [32] VEKSHA A, YIN K, MOO J G S, et al. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction[J]. Journal of Hazardous Materials, 2020, 387:121256.
    [33] GONG J, LIU J, MA L, et al. Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cu-Ni/C composites and their application in catalyzing "Click" reaction[J]. Applied Catalysis B Environmental, 2012, 117-118:185-193.
    [34] WU C F, NAHIL M A, MISKOLCZI N, et al. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes[J]. Environmental Science & Technology, 2014, 48(1):819-826.
    [35] 龚江. 聚合物的碳化反应及其应用[D]. 长春:中国科学院长春应用化学研究所,2015.
    [36] CUI J X, TAN S N, SONG R J. Universal Ni-Mo-Mg catalysts combined with carbon blacks for the preparation of carbon nanotubes from polyolefins[J]. Journal of Applied Polymer Science, 2017, 134(14):44647-44659.
    [37] GONG J, FENG J D, LIU J, et al. Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes[J]. Chemical Engineering Journal, 2014, 248:27-40.
    [38] 赵磊,王中慧,陈德珍,等. 杂质对废塑料裂解产物及污染物排放的影响[J]. 环境科学,2012,33(1):329-336.
    [39] GOU X, ZHAO D, WU C F. Catalytic conversion of hard plastics to valuable carbon nanotubes[J]. Journal of Analytical and Applied Pyrolysis, 2020,145:104748.
    [40] ACOMB J C, WU C F, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Applied Catalysis B:Environmental, 2016, 180:497-510.
    [41] YAO D D, WU C F, YANG H P, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148:692-700.
    [42] 公维光,徐元元,郑柏存. 镍基双金属催化剂/活性炭催化聚丙烯成炭及燃烧性能研究[J]. 化学工业与工程,2015,32(5):98-102.
    [43] NAHIL M A, WU C F, WILLIAMS P T. Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene[J]. Fuel Processing Technology, 2015, 130:46-53.
    [44] ABOUL-ENEIN A A, AWADALLAH A E. Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste[J]. Materials Chemistry and Physics, 2019, 238:121879.
    [45] ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chemical Engineering Journal, 2018, 354:802-816.
    [46] BAJAD G, VIJAYAKUMAR R P, RAKHUNDE P, et al. Processing of mixed-plastic waste to fuel oil, carbon nanotubes and hydrogen using multi-core reactor[J]. Chemical Engineering and Processing:Process Intensification, 2017, 121:205-214.
    [47] AWADALLAH A E, ABOUL-ENEIN A A, YONIS M M, et al. Effect of structural promoters on the catalytic performance of cobalt-based catalysts during natural gas decomposition to hydrogen and carbon nanotubes[J]. Fullerene Science & Technology, 2016, 24(3):181-189.
    [48] YU G J, GONG J L, ZHU D Z, et al. Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature[J]. Diamond & Related Materials, 2006, 15(9):1261-1265.
    [49] 兰美晨,沈伯雄,王建桥,等. 不同活性炭负载的镍基催化剂上废塑料裂解制碳纳米管性能[J]. 燃料化学学报,2019,47(11):1-7.
    [50] JIANG Z W, SONG R J, BI W G, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon, 2007, 45(2):449-458.
    [51] TAKENAKA S, ISHIDA M, SERIZAWA M, et al. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(31):11464-11472.
    [52] YAO D D, ZHANG Y S, WILLIAMS P T, et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics:Influence of catalyst composition and operational parameters[J]. Applied Catalysis B:Environmental, 2018, 221:584-597.
    [53] EDGAR K, SPENCER J L. The synthesis of carbon nanotubes from Müller clusters[J]. Current Applied Physics, 2006, 6(3):419-421.
    [54] ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni-Cu catalysts[J]. Polymer Degradation and Stability, 2019, 167:157-169.
    [55] ACOMB J C, WU C F, WILLIAMS P T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113:231-238.
    [56] ABOUL-ENEIN A A, AWADALLAH A E. A novel design for mass production of multi-walled carbon nanotubes using Co-Mo/MgO catalyst via pyrolysis of polypropylene waste:effect of operating conditions[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(9):591-605.
    [57] TRIPATHI P K, DURBACH S, COVILLE N J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst[J]. Nanomaterials, 2017, 7(10):284-301.
    [58] ZHANG Y S, NAHIL M A, WU C F, et al. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products[J]. Environmental Technology, 2017,38(22):2889-2897.
    [59] ACOMB J C, WU C F, WILLIAMS P T. Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes[J]. Applied Catalysis B:Environmental, 2014, 147:571-584.
    [60] ZHANG Y S, WILLIAMS P T. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122:490-501.
  • 加载中
计量
  • 文章访问数:  385
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回