PROGRESS IN PREPARATION OF CARBON NANOTUBES BY THERMAL CATALYSIS OF WASTE PLASTICS
-
摘要: 碳纳米管(CNTs)具有优异的理化特性,在多个领域拥有广阔的应用前景。然而,原料成本高等因素限制了其大规模生产与应用。废塑料年产量巨大,富含C、H元素,在催化热解过程中可产生大量CNTs生长所需的气态碳源,因而废塑料在热催化制备CNTs方面极具潜力。以塑料废弃物为原料制备CNTs,既可以降低CNTs的生产成本,又能够实现塑料废弃物的高效处置与高值化利用。梳理了近年来以废塑料为原料制备CNTs领域的相关文献,介绍了CNTs的生长机理,概述了塑料种类、催化剂及反应条件等因素对CNTs产率与品质的影响,并对废塑料热催化制备CNTs进行展望,以期为废塑料资源化利用提供理论参考。Abstract: Carbon nanotubes (CNTs) have excellent physical and chemical properties, and wide application prospects in many fields. However, the high cost of raw materials limits its large-scale production and application. Waste plastics has huge annual yield, rich in carbon and hydrogen. They can produce a large number of gaseous carbon sources for the growth of CNTs during catalytic pyrolysis, so waste plastics has a great potential in the preparation of CNTs. Using waste plastics as raw material to synthesize CNTs can not only reduce the production cost of CNTs, but also realize the efficient disposal and high value utilization of waste plastics. Based on the relevant literatures in the field of synthesis of CNTs from waste plastics in recent years, the review introduced the growth mechanism of CNTs, and summarized the effects of plastic-type, catalyst and reaction conditions on the yield and quality of CNTs. Finally, the prospect of preparation of CNTs from waste plastics by thermal catalysis was indicated, which provided a theoretical basis for resource utilization of waste plastics.
-
Key words:
- waste plastics /
- carbon nanotubes /
- pyrolysis /
- catalyst /
- formation mechanism
-
[1] WEN Y L, KIERZEK K, CHEN X C, et al. Mass production of hierarchically porous carbon nanosheets by carbonizing "real-world" mixed waste plastics toward excellent-performance supercapacitors[J]. Waste Management, 2019, 87:691-700. [2] WANG J Q, SHEN B X, LAN M C, et al. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics:The influence of catalyst and reaction pressure[J]. Catalysis Today, 2020, 351:50-57. [3] 赵传靓,闫仪,苏俊堂,等. 水体环境中纳米塑料的危害与检测研究进展[J]. 环境工程,2019,37(12):64-70. [4] 尹凤福,闫磊,韩清新,等. 近红外光谱(NIR)分选技术在塑料分选领域的应用[J]. 环境工程,2017,35(12):134-138. [5] SOLIS M, SILVEIRA S. Technologies for chemical recycling of household plastics:a technical review and TRL assessment[J]. Waste Management, 2020, 105:128-138. [6] ALI S, REHMAN S, LUAN H Y, et al. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination[J]. Science of the Total Environment, 2019, 646:1126-1139. [7] HAN T, NAG A, CHANDRA M, et al. Carbon nanotubes and its gas-sensing applications:a review[J]. Sensors and Actuators A:Physical, 2019, 291:107-143. [8] RATHER S U. Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites:a review[J]. International Journal of Hydrogen Energy, 2020, 45(7):4653-4672. [9] FARAVELLI T, PINCIROLI M, PISANO F, et al. Thermal degradation of polystyrene[J]. Journal of Analytical & Applied Pyrolysis, 2001, 60(1):103-121. [10] 马川. 典型溴系阻燃电子塑料的热解-催化提质实验研究[D]. 武汉:华中科技大学,2017. [11] 丁明洁,陈思顺,赵书伟,等. 论聚烯烃裂解反应中的油化效果增强效应[J]. 环境保护科学,2005,31(4):38-40. [12] WANG Y, GAO X F, QIAN H J, et al. Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes[J]. Carbon, 2014, 72:22-37. [13] WANG J K, DENG X G, ZHANG H J, et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 86:24-35. [14] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes:a review[J]. Chem Sus Chem, 2011, 4:824-847. [15] KUMAR M, ANDO Y. Chemical vapor deposition of carbon nanotubes:a review on growth mechanism and mass production[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):3739-3758. [16] ZHOU L, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B:Environmental, 2017, 208:44-59. [17] SCHAPER A K, HOU H Q, GREINER A, et al. The role of iron carbide in multiwalled carbon nanotube growth[J]. Journal of Catalysis, 2004, 222(1):250-254. [18] 姚丁丁. 废塑料催化热解制备富氢气体和碳纳米管的实验研究[D]. 武汉:华中科技大学,2018. [19] LIU B L, TANG D M, SUN C H, et al. Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(2):197-199. [20] LIN M, TAN J P Y, BOOTHROYD C, et al. Dynamical observation of bamboo-like carbon nanotube growth[J]. Nano Letters, 2007, 7(8):2234-2238. [21] GONG J, LIU J, WAN D, et al. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Applied Catalysis A:General, 2012, 449:112-120. [22] OHTA Y, OKAMOTO Y, IRLE S, et al. Density-functional tight-binding molecular dynamics simulations of SWCNT growth by surface carbon diffusion on an iron cluster[J]. Carbon, 2009, 47(5):1270-1275. [23] OHTA Y, OKAMOTO Y, PAGE A J, et al. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle[J]. ACS Nano, 2009, 3(11):3413-3420. [24] OHTA Y, OKAMOTO Y, IRLE S, et al. Rapid growth of a single-walled carbon nanotube on an iron cluster:density-functional tight-binding molecular dynamics simulations[J]. Acs Nano, 2008, 2(7):1437-1444. [25] PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. SWNT nucleation from carbon-coated SiO2 nanoparticles via a vapor-solid-solid mechanism[J]. Journal of the American Chemical Society, 2011, 133(3):621-628. [26] PAGE A J, CHANDRAKUMAR K R S, IRLE S, et al. Thermal annealing of SiC nanoparticles induces SWNT nucleation:evidence for a catalyst-independent VSS mechanism[J]. Physical Chemistry Chemical Physics, 2011, 13(34):15673-15680. [27] LIU H P, TAKAGI D, CHIASHI S, et al. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(6):4068-4073. [28] 张如范,张莹莹,谢欢欢,等. 水平阵列碳纳米管的可控制备及优异性能[J]. 中国科学(化学),2015,45(10):979-1009. [29] PANAHI A, WEI Z X, SONG G C, et al. Influence of stainless-steel catalyst substrate type and pretreatment on growing carbon nanotubes from waste postconsumer plastics[J]. Industrial & Engineering Chemistry Research, 2019, 58(8):3009-3023. [30] ABOUL-ENEIN A A, AWADALLAH A E, ABDEL-RAHMAN A, et al. Synthesis of multi-walled carbon nanotubes via pyrolysis of plastic waste using a two-stage process[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(7):443-450. [31] VEKSHA A, GIANNIS A, CHANG V. Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials:Effects of feedstock and temperature[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:16-24. [32] VEKSHA A, YIN K, MOO J G S, et al. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction[J]. Journal of Hazardous Materials, 2020, 387:121256. [33] GONG J, LIU J, MA L, et al. Effect of Cl/Ni molar ratio on the catalytic conversion of polypropylene into Cu-Ni/C composites and their application in catalyzing "Click" reaction[J]. Applied Catalysis B Environmental, 2012, 117-118:185-193. [34] WU C F, NAHIL M A, MISKOLCZI N, et al. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes[J]. Environmental Science & Technology, 2014, 48(1):819-826. [35] 龚江. 聚合物的碳化反应及其应用[D]. 长春:中国科学院长春应用化学研究所,2015. [36] CUI J X, TAN S N, SONG R J. Universal Ni-Mo-Mg catalysts combined with carbon blacks for the preparation of carbon nanotubes from polyolefins[J]. Journal of Applied Polymer Science, 2017, 134(14):44647-44659. [37] GONG J, FENG J D, LIU J, et al. Catalytic carbonization of polypropylene into cup-stacked carbon nanotubes with high performances in adsorption of heavy metallic ions and organic dyes[J]. Chemical Engineering Journal, 2014, 248:27-40. [38] 赵磊,王中慧,陈德珍,等. 杂质对废塑料裂解产物及污染物排放的影响[J]. 环境科学,2012,33(1):329-336. [39] GOU X, ZHAO D, WU C F. Catalytic conversion of hard plastics to valuable carbon nanotubes[J]. Journal of Analytical and Applied Pyrolysis, 2020,145:104748. [40] ACOMB J C, WU C F, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Applied Catalysis B:Environmental, 2016, 180:497-510. [41] YAO D D, WU C F, YANG H P, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148:692-700. [42] 公维光,徐元元,郑柏存. 镍基双金属催化剂/活性炭催化聚丙烯成炭及燃烧性能研究[J]. 化学工业与工程,2015,32(5):98-102. [43] NAHIL M A, WU C F, WILLIAMS P T. Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene[J]. Fuel Processing Technology, 2015, 130:46-53. [44] ABOUL-ENEIN A A, AWADALLAH A E. Impact of Co/Mo ratio on the activity of CoMo/MgO catalyst for production of high-quality multi-walled carbon nanotubes from polyethylene waste[J]. Materials Chemistry and Physics, 2019, 238:121879. [45] ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chemical Engineering Journal, 2018, 354:802-816. [46] BAJAD G, VIJAYAKUMAR R P, RAKHUNDE P, et al. Processing of mixed-plastic waste to fuel oil, carbon nanotubes and hydrogen using multi-core reactor[J]. Chemical Engineering and Processing:Process Intensification, 2017, 121:205-214. [47] AWADALLAH A E, ABOUL-ENEIN A A, YONIS M M, et al. Effect of structural promoters on the catalytic performance of cobalt-based catalysts during natural gas decomposition to hydrogen and carbon nanotubes[J]. Fullerene Science & Technology, 2016, 24(3):181-189. [48] YU G J, GONG J L, ZHU D Z, et al. Efficient synthesis of carbon nanotubes over rare earth zeolites by thermal chemical vapor deposition at low temperature[J]. Diamond & Related Materials, 2006, 15(9):1261-1265. [49] 兰美晨,沈伯雄,王建桥,等. 不同活性炭负载的镍基催化剂上废塑料裂解制碳纳米管性能[J]. 燃料化学学报,2019,47(11):1-7. [50] JIANG Z W, SONG R J, BI W G, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon, 2007, 45(2):449-458. [51] TAKENAKA S, ISHIDA M, SERIZAWA M, et al. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(31):11464-11472. [52] YAO D D, ZHANG Y S, WILLIAMS P T, et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics:Influence of catalyst composition and operational parameters[J]. Applied Catalysis B:Environmental, 2018, 221:584-597. [53] EDGAR K, SPENCER J L. The synthesis of carbon nanotubes from Müller clusters[J]. Current Applied Physics, 2006, 6(3):419-421. [54] ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni-Cu catalysts[J]. Polymer Degradation and Stability, 2019, 167:157-169. [55] ACOMB J C, WU C F, WILLIAMS P T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113:231-238. [56] ABOUL-ENEIN A A, AWADALLAH A E. A novel design for mass production of multi-walled carbon nanotubes using Co-Mo/MgO catalyst via pyrolysis of polypropylene waste:effect of operating conditions[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2018, 26(9):591-605. [57] TRIPATHI P K, DURBACH S, COVILLE N J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst[J]. Nanomaterials, 2017, 7(10):284-301. [58] ZHANG Y S, NAHIL M A, WU C F, et al. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products[J]. Environmental Technology, 2017,38(22):2889-2897. [59] ACOMB J C, WU C F, WILLIAMS P T. Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes[J]. Applied Catalysis B:Environmental, 2014, 147:571-584. [60] ZHANG Y S, WILLIAMS P T. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122:490-501.
点击查看大图
计量
- 文章访问数: 385
- HTML全文浏览量: 29
- PDF下载量: 12
- 被引次数: 0