CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废锂离子电池正极材料的火法资源化技术研究进展

李之钦 庄绪宁 宋小龙 李斐 李英顺 顾卫华 白建峰

李之钦, 庄绪宁, 宋小龙, 李斐, 李英顺, 顾卫华, 白建峰. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39(4): 115-122,146. doi: 10.13205/j.hjgc.202104018
引用本文: 李之钦, 庄绪宁, 宋小龙, 李斐, 李英顺, 顾卫华, 白建峰. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39(4): 115-122,146. doi: 10.13205/j.hjgc.202104018
LI Zhi-qin, ZHUANG Xu-ning, SONG Xiao-long, LI Fei, LI Ying-shun, GU Wei-hua, BAI Jian-feng. RESEARCH PROGRESS ON RECOVERY OF CATHODE MATERIAL FROM SPENT LITHIUM-ION BATTERIES BY PYROMETALLURGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 115-122,146. doi: 10.13205/j.hjgc.202104018
Citation: LI Zhi-qin, ZHUANG Xu-ning, SONG Xiao-long, LI Fei, LI Ying-shun, GU Wei-hua, BAI Jian-feng. RESEARCH PROGRESS ON RECOVERY OF CATHODE MATERIAL FROM SPENT LITHIUM-ION BATTERIES BY PYROMETALLURGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 115-122,146. doi: 10.13205/j.hjgc.202104018

废锂离子电池正极材料的火法资源化技术研究进展

doi: 10.13205/j.hjgc.202104018
详细信息
    作者简介:

    李之钦(1995-),男,硕士研究生,主要研究方向为废旧锂电池资源回收。842876448@qq.com

    通讯作者:

    庄绪宁(1984-),博士,副研究员,主要研究方向为电子废弃物资源化与污染防治。xnzhuang@sspu.edu.cn

RESEARCH PROGRESS ON RECOVERY OF CATHODE MATERIAL FROM SPENT LITHIUM-ION BATTERIES BY PYROMETALLURGY

  • 摘要: 废锂离子电池兼具资源化价值与环境危害双重属性,故对其进行有价资源的二次回收再生,并同时实现无害化处理具有重要现实意义。火法技术因其处理流程短、高效、易工业化应用等特点,已成为废锂离子电池资源化研究热点之一,其主要基于高温条件下的化学转化,实现有价金属Li、Co、Ni等的回收或资源化再生。系统介绍了火法技术在废锂离子电池正极材料资源化中的应用及其研究现状,包括电极材料解离、有价金属冶炼回收、正极活性材料再生等方面,分析了不同热处理技术的优势及其存在的问题,并展望了未来废锂离子电池正极材料火法资源化处理技术的研究方向。
  • [1] 张悦, 何丽杰, 张守庆,等. 废旧锂离子电池的回收技术现状及展望[J]. 电源技术, 2018, 42,335(8):142

    -144.
    [2] 刘光富,林锦灿,田婷婷.新能源汽车动力电池报废量估算和资源潜力分析[J].中国资源综合利用,2020,38(1):96-99.
    [3] 王辉,丰成友,张明玉.全球钴矿资源特征及勘察研究进展[J].矿床地质,2019,38(4):739-750.
    [4] 路长远,鲁雄刚,邹星礼,等.中国镍矿资源现状及技术进展[J].自然杂质,2015,37(4):269-277.
    [5] 余文刚,毛治超,孙春叶.我国锰矿资源及评价方法综述[J].知识园地,2013(2):22-24.
    [6] 杨卉芃,柳林,丁国锋.全球锂矿资源现状及发展趋势[J].矿产保护及利用,2019(5):26-40.
    [7] 郝涛,张英杰,董鹏,等.废旧三元动力锂离子电池正极材料回收的研究进展[J].硅酸盐通报,2018.37(8):2451-2456.
    [8] ZENG X L, LI J H, SINGH N. Recycling of spent lithium-ion battery:a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10):1129-1165.
    [9] YANG Y, LEI S Y, SONG S L, et al. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries[J]. Waste Management, 2020, 102:131-138.
    [10] SATTAR R, ILYAS S, BHATTI H N, et al. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries[J]. Separation and Purification Technology, 2019, 209:725-733.
    [11] ZHAO J J, ZHANG B L, XIE H W, et al. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent[J]. Environmental Research, 2020, 181:108803.
    [12] MESHRAM P, ABHILASH, PANDEY B. D, et al. Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries[J]. Jom, 2016, 68(10):2613-2623.
    [13] CHEN X P, KANG D Z, LI J Z, et al. Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication[J]. Journal of Hazardous Materials, 2020,389:121887.
    [14] 郑莹,凌海,莫文婷,等.废旧镍钴锰酸锂电池正极材料闭环回收[J].环境工程学报,2019,13(5):1157-1164.
    [15] 陆修远,张贵清,曹佐英,等.采用硫酸-还原剂浸出工艺从废锂离子电池中回收LiNi0.6Mn0.2Co0.2O2[J].稀有金属与硬质合金,2017,45(6):14-23.
    [16] 陈亮,唐新村,张阳,等.从废锂离子电池中分离回收钴镍锰[J].中国有色金属学报,2011,21(5):1192-1198.
    [17] WANG B, LIN X Y, TANG Y Y, et al. Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials[J]. Journal of Power Sources, 2019, 436:226828.
    [18] GUO M M, LI K, LIU L Z, et al. Resource utilization of spent ternary lithium-ions batteries:synthesis of highly active manganese-based perovskite catalyst for toluene oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102:268-275.
    [19] ZHANG X X, BIAN Y F, XU S, et al. Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):5959-5968.
    [20] GAO W F, SONG J L, CAO H B, et al. Selective recovery of valuable metals from spent lithium-ion batteries-Process development and kinetics evaluation[J]. Journal of Cleaner Production, 2018, 178:833-845.
    [21] LI L, BIAN Y F, ZHANG X X, et al. Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377:70-79.
    [22] 吴芳.从废旧锂离子二次电池中回收钴和锂[J].中国有色金属学报,2004,14(4):698-701.
    [23] ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19):7239-7302.
    [24] 姚路. 废锂离子电池正极材料回收再利用研究[D].新乡:河南师范大学,2016.
    [25] WANG M M, TAN Q Y, LIU L L, et al. Environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15):12799-12806.
    [26] WANG M M, TAN Q Y, LIU L L, et al. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9):8287-8294.
    [27] 苟海鹏,裴忠冶,周国治,等.火法处理废旧三元锂离子电池工艺研究[J].中国有色金属,2019,8(4):79-83.
    [28] ZHANG G W, HE Y Q, WANG H F, et al. Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5):2205-2214.
    [29] 王芳,张邦胜,刘贵清,等.废旧动力电池资源再生利用技术进展[J].中国资源综合利用,2018,36(10):106-110.
    [30] XIAO S W, REN G X, XIE M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system[J]. Journal of Sustainable Metallurgy, 2017, 3(4):703-710.
    [31] 郭学益,田庆华,刘咏,等.有色金属资源循环研究应用进展[J].中国有色金属学报,2019,29(9):1859-1901.
    [32] YUE Y, WEI S, ZHANG Y J, et al. Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8):10445-10453.
    [33] TANG Y Q, XIE H W, ZHANG B L, et al. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach:controlling the recovery of CoO or Co[J]. Waste Management, 2019, 97:140-148.
    [34] WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019.
    [35] LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2018, 136(3):1323-1332.
    [36] ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102:847-855.
    [37] ZHANG J L, HU J T, ZHANG W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries[J]. Journal of Cleaner Production, 2018, 204:437-446.
    [38] WANG W Q, ZHANG Y C, ZHANG L, et al. Cleaner recycling of cathode material by in-situ thermite reduction[J]. Journal of Cleaner Production, 2020, 249:119340.
    [39] HUANG Z, ZHU J, QIU R T, et al. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2019, 229:1148-1157.
    [40] ZHAO Y Z, LIU B G, ZHANG L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling[J]. Journal of Hazardous Materials, 2020, 384:121487.
    [41] FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19):16144-16150.
    [42] 王大辉,李辉辉,姜丽丽,等.酸化焙烧法回收锂电池正极材料过程中元素的迁移规律及赋存状态研究[J].新技术新工艺,2014(12):94-97.
    [43] 孙建勇.采用硫酸化焙烧-水浸出工艺从LiNi1/3Co1/3Mn1/3O2中回收金属的研究[D].兰州:兰州理工大学,2018.
    [44] 于曼.循环浸出法高值回收废旧镍钴锰三元材料及其相关精细化学品[D].北京:北京化工大学,2018.
    [45] LIN J, LIU C W, CAO H B, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21):5904-5913.
    [46] ZHANG X H, XIE Y B, CAO H B, et al. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries[J]. Waste Management, 2014, 34(9):1715-1724.
    [47] 楼平,徐国华,岳灵平,等.熔盐法再生修复退役三元动力电池正极材料[J].储能科学与技术,2020,9(3):848-855.
    [48] MENG X Q, HAO J, CAO H B, et al. Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering[J]. Waste Management, 2019, 84:54-63.
    [49] 刘桐,焦芬,钟雪虎,等.废旧锂电池正负极材料修复再生技术[J].电源技术,2019,43(4):699-701.
    [50] WANG L H, LI J, ZHOU H M, et al. Regeneration cathode material mixture from spent lithium iron phosphate batteries[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(11):9283-9290.
    [51] 杨秋菊,赵世超,王楠,等.废旧动力锂离子电池中磷酸铁锂的再生[J].电池,2014,44(1):60-62.
    [52] LIANG Q, YUE H F, WANG S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020:330:135323.
    [53] SUN Q F, LI X L, ZHANG H Z, et al. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route[J]. Journal of Alloys and Compounds, 2020, 818:153292.
  • 加载中
计量
  • 文章访问数:  532
  • HTML全文浏览量:  90
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-28
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回