EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL
-
摘要: 针对微生物电解池(MEC)处理剩余污泥时水解速率慢、有机质降解率低的问题,采用冻融破解预处理剩余污泥,探讨了冻融对污泥泥质的影响及对后续MEC处理效能的强化作用。结果表明:冻融处理可以有效促进污泥絮体解散、细胞破裂及有机物溶出,在-18℃冷冻72 h,26℃融解3 h后,污泥SCOD增加了2.58倍。以冻融污泥为底物的MEC装置,在0.7 V外加电压条件下,污泥SS和TCOD去除率分别超过40%和60%。与未经处理的原泥相比,冻融处理提高了MEC装置的库伦效率和阴极H2回收率,分别提高了5.8%和6.7%。微生物群落分析表明,冻融预处理促进了微生物电解过程中产电菌群(如变形菌门(Proteobacteria)、厚壁菌门(Firmicutes))的生长和富集,改善了剩余污泥的资源利用和能源回收效益。Abstract: In this study, freezing/thawing pretreatment was adopted to disrupt sludge matrix in order to improve hydrolysis rate and degradation of organic matter in microbial electrolysis cell (MEC) feeding with excess sludge. The influence of freezing/thawing on sludge characteristics and performance of subsequent MEC was discussed. The results showed that freezing/thawing pretreatment could effectively promote the floc disintegration, cell rupture and organics dissolution of the sludge. When being freezed at -18℃ for 72 h and then thawed at 26℃ for 3 h, the SCOD content in the sludge increased by 2.58 times. At applied voltage of 0.7 V, with freezing/thawing-pretreated sludge as the substrate, the removal rates of SS and TCOD in MEC exceeded 40% and 60%, respectively. Compared with raw sludge, the pretreatment increased coulomb efficiency and cathode hydrogen recovery in MEC by 5.8% and 6.7%, respectively. Microbial community analysis showed that freezing/thawing pretreatment facilitated the enrichment of exoelectrogens (including Proteobacteria and Firmicutes) in MEC, therefore improved the overall utilization and energy recovery from excess sludge via MEC.
-
[1] 白妮,王爱民,王金玺,等. 城市剩余污泥处置与利用技术研究新进展[J]. 工业用水与废水,2019, 50(4):6-11. [2] ARVIN A, HOSSEINI M, AMIN M M, et al. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell:the effect of the operational parameters in batch and continuous mode on bioenergy recovery[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1):305-317. [3] 高彬,刘茜. 冻融法对剩余污泥脱水性能的研究[J]. 环境与发展, 2018, 30(11):113-114. [4] ORMECI B, VESILIND P A. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges[J]. Water Research, 2001, 35(18):4299-4306. [5] MONTUSIEWICZ A, LEBIOCKA M, ROZEJ A, et al. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge[J]. Bioresource Technology, 2010, 101(10):3466-3473. [6] VILLANO M, AULENTA F, BECCARI M, et al. Start-up and Performance of an Activated Sludge Bioanode in Microbial Electrolysis Cells[J]. Chemical Engineering Transactions, 2012:109-114. [7] 胡凯. 污泥预处理-厌氧消化工艺性能及预处理过程中有机物变化[D]. 哈尔滨:哈尔滨工业大学, 2011. [8] 国家环境保护总局. 水与废水监测分析方法[M]. 北京:中国环境科学出版社, 2002. [9] 何盛东,陈思,李小虎,等. 单室双阳极微生物电解池利用氢发酵废水产氢[J]. 环境工程学报, 2019, 13(6):1441-1448. [10] E L B, DOUGLAS C, SHAOAN C, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23). [11] 陈兴财,张丰松,童心,等. 畜禽粪便冻融作用后磷形态分布及其释放特征[J]. 环境科学学报, 2019, 39(5):1617-1625. [12] 代东梁. 冻融预处理对剩余污泥制氢效能的研究[D]. 长春:吉林建筑大学, 2015. [13] 贺张伟. 预处理方法对污泥厌氧耦合微生物电解及厌氧消化产能的影响[D]. 哈尔滨:哈尔滨工程大学, 2014. [14] JAN T W, ADAV S S, LEE D J, et al. Hydrogen Fermentation and Methane Production from Sludge with Pretreatments[J]. Energy & Fuels, 2008, 22(1):98-102. [15] 王晶,田东军,刘芳,等. 微波联合MEC处理市政污泥运行性能研究[J]. 工业水处理, 2019, 39(6):61-64. [16] LU L, XING D, REN N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7):2434. [17] YANG C, LIU W, HE Z, et al. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1:acceleration on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2015, 175:509-516. [18] EATON A. Measuring UV-Absorbing Organics:a Standard Method[J]. Journal-American Water Works Association, 1995, 87(2):86-90. [19] 陈悦佳,赵庆良,柳成才. 冻融处理对不同阴极构型MFC产电及有机物降解的影响[J]. 中国环境科学, 2015, 35(5):1359-1367. [20] HU K, JIA S, YANG C, et al. Combined freezing-thawing pretreatment and microbial electrolysis cell for enhancement of highly concentrated organics degradation from dewatered sludge[J]. Bioengineered, 2020, 11(1):301-310. [21] HARI A R, KATURI K P, GORRON E, et al. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate[J]. Applied Microbiology and Biotechnology, 2016, 100(13):5999-6011. [22] 梁庆,李华华,邢德峰. 基于多Agent仿真解析处理剩余污泥的微生物电解池种群互作关系[J]. 微生物学通报, 2019, 46(8):1886-1895. [23] RAO H A, KRISHNAVENI V, P K K, et al. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells-Influence of Acetate and Propionate Concentration[J]. Frontiers in Microbiology, 2017, 8. [24] LEE H S, RITTMANN B E. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell[J]. Environmental Science & Technology, 2010, 44(3):948-954. [25] 赵欣,吴忆宁,王岭,等. 单室微生物电解池除镍途径分析及微生物群落动态特征[J]. 微生物学报, 2016, 56(11):1794-1801. [26] 代红艳,杨慧敏,刘宪,等. 废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析[J]. 电化学, 2019, 25(6):773-780. [27] 陈末,朱新萍,蒋靖佰伦,等. 冻融期巴音布鲁克高寒湿地土壤细菌群落变化及其响应机制[J]. 农业环境科学学报, 2020, 39(1):134-142. [28] WRIGHTON K C, AGBO P, WARNECKE F, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells[J]. The ISME Journal, 2008, 2(11):1146-1156. [29] 孙彩玉. 基于BES污水处理-产能研究及微生物群落结构解析[D]. 哈尔滨:东北林业大学, 2016. [30] BAO T, FENG J, JIANG W, et al. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum[J]. World Journal of Microbiology and Biotechnology, 2020, 36(9). [31] TOMONORI K, SHIRO Y, RYOHEI U, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. Fems Microbiology Ecology, 2016(6):78. [32] LIU Y, NIU Q, WANG S, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system:nitrogen removal potential and microbial characterization[J]. Bioresource Technology, 2017:463-472. [33] J G M, PAULA M, JESÚS G, et al. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations[J]. Chemosphere, 2017, 193. [34] YANG G, YIN Y, WANG J. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures[J]. International Journal of Hydrogen Energy, 2019, 44(26):13147-13156.
点击查看大图
计量
- 文章访问数: 222
- HTML全文浏览量: 36
- PDF下载量: 5
- 被引次数: 0