CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融破解预处理剩余污泥及强化微生物电解池处理效能

孙杏 胡凯 雷晨雨 陈卫

孙杏, 胡凯, 雷晨雨, 陈卫. 冻融破解预处理剩余污泥及强化微生物电解池处理效能[J]. 环境工程, 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023
引用本文: 孙杏, 胡凯, 雷晨雨, 陈卫. 冻融破解预处理剩余污泥及强化微生物电解池处理效能[J]. 环境工程, 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023
SUN Xing, HU Kai, LEI Chen-yu, CHEN Wei. EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023
Citation: SUN Xing, HU Kai, LEI Chen-yu, CHEN Wei. EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 147-155. doi: 10.13205/j.hjgc.202104023

冻融破解预处理剩余污泥及强化微生物电解池处理效能

doi: 10.13205/j.hjgc.202104023
基金项目: 

中央高校科研业务费(2021B14552);江苏高校品牌专业建设工程资助项目(PPZY2015A051);江苏高校优势学科建设工程资助项目(PAPD)。

详细信息
    作者简介:

    孙杏(1996-),女,硕士研究生,主要研究方向为水处理理论与技术。1240517731@qq.com

    通讯作者:

    胡凯(1983-),男,副研究员,主要研究方向为污水及污泥处理及资源化技术。hukaihit@hhu.edu.cn

EFFECT OF FREEZING/THAWING PRETREATMENT ON EXCESS SLUDGE DISINTEGRATION AND TREATMENT EFFICIENCY OF MICROBIAL ELECTROLYSIS CELL

  • 摘要: 针对微生物电解池(MEC)处理剩余污泥时水解速率慢、有机质降解率低的问题,采用冻融破解预处理剩余污泥,探讨了冻融对污泥泥质的影响及对后续MEC处理效能的强化作用。结果表明:冻融处理可以有效促进污泥絮体解散、细胞破裂及有机物溶出,在-18℃冷冻72 h,26℃融解3 h后,污泥SCOD增加了2.58倍。以冻融污泥为底物的MEC装置,在0.7 V外加电压条件下,污泥SS和TCOD去除率分别超过40%和60%。与未经处理的原泥相比,冻融处理提高了MEC装置的库伦效率和阴极H2回收率,分别提高了5.8%和6.7%。微生物群落分析表明,冻融预处理促进了微生物电解过程中产电菌群(如变形菌门(Proteobacteria)、厚壁菌门(Firmicutes))的生长和富集,改善了剩余污泥的资源利用和能源回收效益。
  • [1] 白妮,王爱民,王金玺,等. 城市剩余污泥处置与利用技术研究新进展[J]. 工业用水与废水,2019, 50(4):6-11.
    [2] ARVIN A, HOSSEINI M, AMIN M M, et al. Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell:the effect of the operational parameters in batch and continuous mode on bioenergy recovery[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1):305-317.
    [3] 高彬,刘茜. 冻融法对剩余污泥脱水性能的研究[J]. 环境与发展, 2018, 30(11):113-114.
    [4] ORMECI B, VESILIND P A. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges[J]. Water Research, 2001, 35(18):4299-4306.
    [5] MONTUSIEWICZ A, LEBIOCKA M, ROZEJ A, et al. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge[J]. Bioresource Technology, 2010, 101(10):3466-3473.
    [6] VILLANO M, AULENTA F, BECCARI M, et al. Start-up and Performance of an Activated Sludge Bioanode in Microbial Electrolysis Cells[J]. Chemical Engineering Transactions, 2012:109-114.
    [7] 胡凯. 污泥预处理-厌氧消化工艺性能及预处理过程中有机物变化[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [8] 国家环境保护总局. 水与废水监测分析方法[M]. 北京:中国环境科学出版社, 2002.
    [9] 何盛东,陈思,李小虎,等. 单室双阳极微生物电解池利用氢发酵废水产氢[J]. 环境工程学报, 2019, 13(6):1441-1448.
    [10] E L B, DOUGLAS C, SHAOAN C, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23).
    [11] 陈兴财,张丰松,童心,等. 畜禽粪便冻融作用后磷形态分布及其释放特征[J]. 环境科学学报, 2019, 39(5):1617-1625.
    [12] 代东梁. 冻融预处理对剩余污泥制氢效能的研究[D]. 长春:吉林建筑大学, 2015.
    [13] 贺张伟. 预处理方法对污泥厌氧耦合微生物电解及厌氧消化产能的影响[D]. 哈尔滨:哈尔滨工程大学, 2014.
    [14] JAN T W, ADAV S S, LEE D J, et al. Hydrogen Fermentation and Methane Production from Sludge with Pretreatments[J]. Energy & Fuels, 2008, 22(1):98-102.
    [15] 王晶,田东军,刘芳,等. 微波联合MEC处理市政污泥运行性能研究[J]. 工业水处理, 2019, 39(6):61-64.
    [16] LU L, XING D, REN N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge[J]. Water Research, 2012, 46(7):2434.
    [17] YANG C, LIU W, HE Z, et al. Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1:acceleration on waste activated sludge hydrolysis and acidification[J]. Bioresource Technology, 2015, 175:509-516.
    [18] EATON A. Measuring UV-Absorbing Organics:a Standard Method[J]. Journal-American Water Works Association, 1995, 87(2):86-90.
    [19] 陈悦佳,赵庆良,柳成才. 冻融处理对不同阴极构型MFC产电及有机物降解的影响[J]. 中国环境科学, 2015, 35(5):1359-1367.
    [20] HU K, JIA S, YANG C, et al. Combined freezing-thawing pretreatment and microbial electrolysis cell for enhancement of highly concentrated organics degradation from dewatered sludge[J]. Bioengineered, 2020, 11(1):301-310.
    [21] HARI A R, KATURI K P, GORRON E, et al. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate[J]. Applied Microbiology and Biotechnology, 2016, 100(13):5999-6011.
    [22] 梁庆,李华华,邢德峰. 基于多Agent仿真解析处理剩余污泥的微生物电解池种群互作关系[J]. 微生物学通报, 2019, 46(8):1886-1895.
    [23] RAO H A, KRISHNAVENI V, P K K, et al. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells-Influence of Acetate and Propionate Concentration[J]. Frontiers in Microbiology, 2017, 8.
    [24] LEE H S, RITTMANN B E. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell[J]. Environmental Science & Technology, 2010, 44(3):948-954.
    [25] 赵欣,吴忆宁,王岭,等. 单室微生物电解池除镍途径分析及微生物群落动态特征[J]. 微生物学报, 2016, 56(11):1794-1801.
    [26] 代红艳,杨慧敏,刘宪,等. 废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析[J]. 电化学, 2019, 25(6):773-780.
    [27] 陈末,朱新萍,蒋靖佰伦,等. 冻融期巴音布鲁克高寒湿地土壤细菌群落变化及其响应机制[J]. 农业环境科学学报, 2020, 39(1):134-142.
    [28] WRIGHTON K C, AGBO P, WARNECKE F, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells[J]. The ISME Journal, 2008, 2(11):1146-1156.
    [29] 孙彩玉. 基于BES污水处理-产能研究及微生物群落结构解析[D]. 哈尔滨:东北林业大学, 2016.
    [30] BAO T, FENG J, JIANG W, et al. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum[J]. World Journal of Microbiology and Biotechnology, 2020, 36(9).
    [31] TOMONORI K, SHIRO Y, RYOHEI U, et al. Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J]. Fems Microbiology Ecology, 2016(6):78.
    [32] LIU Y, NIU Q, WANG S, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system:nitrogen removal potential and microbial characterization[J]. Bioresource Technology, 2017:463-472.
    [33] J G M, PAULA M, JESÚS G, et al. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations[J]. Chemosphere, 2017, 193.
    [34] YANG G, YIN Y, WANG J. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures[J]. International Journal of Hydrogen Energy, 2019, 44(26):13147-13156.
  • 加载中
计量
  • 文章访问数:  210
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回