PASSIVATION AND REMEDIATION OF MERCURY CONTAMINATED SOIL BY POLYMER AND PASSIVATOR
-
摘要: 采用盆栽试验方法,研究了添加1种耐酸性较强的高分子聚合物与传统的有机或无机类钝化剂复配来钝化土壤重金属汞,并探讨其对土壤理化特性、植物生长发育、土壤汞形态以及酶活性等的影响。结果表明:与对照(CK)相比,添加不同钝化剂均能有效改善汞污染土壤理化状况和土壤微环境,促进植物生长。不同钝化剂处理均显著降低了土壤有效态汞的比例,土壤水溶态、可交换态汞比例分别较CK降低了106%~315%、12.61%~34.60%;与单一钝化剂相比,添加高分子聚合物的钝化剂能更有效吸附、固定土壤中的汞,并降低土壤重金属汞的生物有效性;生物炭-聚丙烯酰胺(BI-PAM)处理对土壤有机质含量和pH增加最为明显,且对土壤重金属汞的钝化效果最好(水溶态汞、可交换态汞和Fe-Mn氧化物结合态汞占总汞比例最小,分别为1.05%、12.14%、12.72%,而强有机结合态汞和残渣态汞比例最高,分别为15.86%和58.23%),能促进增产且减少白菜叶片对汞的吸收富集。根据试验结果,针对汞污染酸性土壤,建议施用生物炭与聚丙烯酰胺复配而成的钝化剂。Abstract: A pot experiment was carried out to study the effects of adding high polymer with strong acid resistance and traditional organic or inorganic passivator to passivate the heavy metal mercury in soil, and to explore its effect on the physical and chemical properties of soil, the growth of plants, the form of mercury in soil and the activity of enzyme. The results showed that:compared with CK, adding different passivators could effectively improve the physical and chemical conditions of mercury contaminated soil and soil microenvironment, and promote plant growth. Compared with CK, the proportion of available mercury in soil was significantly reduced by different passivators, and the ratio of water-soluble and exchangeable mercury in soil decreased by 106%~315% and 12.61%~34.60%, respectively. Compared with single passivator, the bonding passivator with polymer could effectively adsorb and fix mercury, and reduce the bioavailability of heavy metal mercury in soil. The biochar polyacrylamide (BI-PAM)treatment had the best effect on soil organic matter content and pH, and the best passivation effect on heavy metal mercury in soil(water soluble mercury, exchangeable mercury and Fe-Mn oxide bound mercury accounted for the smallest proportion of total mercury, which were 1.05%, 12.14% and 12.72% respectively, while strong organic bound mercury and residual mercury accounted for the highest proportion, which were 15.86% and 58.23% respectively), which could promote the yield and reduce the absorption and enrichment of mercury in cabbage leaves. According to the experimental results, the bonding passivator of biochar and polyacrylamide was recommended in application in acid soil polluted by mercury.
-
Key words:
- mercury contaminated soil /
- passivator /
- PAM /
- mercury form /
- soil enzyme activity
-
[1] 吴烈善, 曾东梅, 莫小荣, 等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学, 2015, 36(1):309-313. [2] 徐振涛, 梁鹏, 吴胜春, 等. 不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J]. 环境化学, 2019, 38(4):832-841. [3] WANG M M, ZHU Y, CHENG L R, et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Journal of Environmental Sciences, 2018, 63(1):156-173. [4] 徐灿灿, 孙达, 王根荣, 等. 富里酸结合叶面硒肥用于油菜修复低汞污染农田土壤[J]. 环境工程, 2019, 37(7):199-203. [5] 曾文號, 黄春燕, 李真, 等. 风化煤对农田土壤重金属汞的钝化修复[J]. 土壤, 2018, 50(5):981-988. [6] 潘亚男, 陈灿, 王欣, 等. 凤眼莲源生物炭对土壤As、Hg、Cd溶出特性与化学形态的影响[J]. 环境科学学报, 2017, 37(6):2342-2350. [7] MCCARTHY D, EDWARDS G C, GUSTIN M S, et al. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations[J]. Chemosphere, 2017, 184:694-699. [8] 周曾艳, 姚元勇, 吴兰艳, 等. 铜仁万山矿区土壤及主要农作物Hg污染分析[J]. 铜仁学院学报, 2018, 20(12):122-125. [9] 陈芬,余高,侯建伟,等.矿渣运输道路两侧农田土壤重金属风险评价[J].西南大学学报(自然科学版),2020,42(11):9-21. [10] XU Y, LIANG X F, XU Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals:a review[J]. Pedosphere, 2017, 27(2):193-204. [11] 罗远恒, 顾雪元, 吴永贵, 等. 钝化剂对农田土壤镉污染的原位钝化修复效应研究[J]. 农业环境科学学报,2014,33(5):890-897. [12] 韩怡新, 何天容, 王祖波. 改性蒙脱土对稻田土壤甲基汞的阻控修复[J]. 环境科学, 2019, 40(11):5107-5113. [13] 谢园艳, 冯新斌, 王建旭. 膨润土联合磷酸氢二铵原位钝化修复汞污染土壤田间试验[J]. 生态学杂志, 2014, 33(7):1935-1939. [14] 李娜, 王筱涵, 尹秀玲, 等. 钝化剂对城市地下污水管网沉积物中汞形态分布和活性的影响[J]. 吉林农业大学学报, 2018,4(3):332-338. [15] 秦端端, 姚粉霞, 陈亚军, 等. 保水剂对土壤重金属镉形态及生物有效性的影响[J]. 农业环境科学学报, 2016,35(12):2327-2333. [16] 孟繁健, 朱宇恩, 孟凡旭, 等. PAM在土壤重金属污染植物修复中的作用及机理研究进展[J]. 中国农学通报, 2018, 34(16):92-99. [17] 徐持平, 周卫军, 徐庆国. 复配钝化剂对污染土壤中铅具有良好的稳定效果[J]. 基因组学与应用生物学, 2018,37(6):2443-2450. [18] 鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社, 2000. [19] 张瑜洁. 生物炭对土壤汞钝化、迁移和转化的影响[D]. 哈尔滨:东北农业大学, 2015. [20] 何天容, 曾玲霞, 许议元, 等. 贵州草海水生植物汞分布及其对沉积物汞的响应[J]. 生态学杂志, 2018, 37(3):793-800. [21] 关松荫. 土壤酶及其研究法[M]. 北京:农业出版社, 1986. [22] 李宝磊, 邵春岩, 陈刚, 等. 我国含汞土壤处置新技术解析[J]. 土壤通报, 2018, 49(5):1247-1253. [23] 窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2018, 36(1):1-8. [24] 刘文庆, 祝方, 商执峰. 纳米羟基磷灰石对铅污染土壤中植物吸收铅和3种酶活性的影响[J]. 安全与环境学报, 2016, 16(1):221-225. [25] HIJBEEK R, ITTERSUM M K V, BERGE H F M T, etal. Do organic input smatter-ameta-analysis of additional yield effects for arable cropsin Europe[J]. Plant and Soil,2017, 411(1/2):293-303. [26] 王晓佳, 王百田, 李德宁, 等. 聚丙稀酰胺高吸附树脂与重金属离子的相互作用[J]. 北京林业大学学报, 2016, 38(3):81-88. [27] 孙婷, 李秋华, 唐黎, 等. 贵阳市百花水库消落带土壤汞形态分布及风险评价[J]. 生态环境学报, 2019, 28(4):831-839. [28] JIŘINA SZÁKOVÁ, JITKA HAVLÍĆKOVÁ, ADÉLA ŠÍPKOVÁ, et al. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil[J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2016, 51(4):1-7. [29] MONTEIRO R J R, RODRIGUES S M, CRUZ N, et al. Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations[J]. Environmental Science & Pollution Research, 2016, 23(14):14327-14337. [30] 胡伟, 秦端端, 李玉和, 等. 添加保水剂和栽种黑麦草对土壤不同形态铅转化的影响[J]. 农业环境科学学报,2017, 36(9):1771-1777. [31] 赵伟, 丁弈君, 孙泰朋, 等. 生物质炭对汞污染土壤吸附钝化的影响[J]. 江苏农业科学, 2017, 45(11):192-196. [32] 潘芳慧, 张晓玮, 王友保. 施磷对吊兰修复镉污染土壤及土壤酶活性的影响[J]. 水土保持学报, 2018, 32(3):346-351. [33] 于培鑫, 潘芳慧, 王友保, 等. 叶绿醇对铅污染土壤酶活性及土壤铅有效态影响[J]. 水土保持学报, 2019, 33(5):358-363. [34] MAHARJAN M, SANAULLAH M, RAZAVI B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology, 2017, 113:22-28. [35] 李家家. 超声波活化风化煤对土壤中Hg形态及土壤酶活性的影响研究[D]. 济南:山东农业大学, 2014. [36] 黄占斌, 孙朋成,钟建, 等. 高分子保水剂在土壤水肥保持和污染治理中的应用进展[J]. 农业工程学报, 2016, 32(1):125-131. [37] 余高, 陈芬, 谢英荷, 等. 有机-无机复合保水材料对旱地麦田土壤水分及酶活性的影响[J]. 节水灌溉, 2018(10):9-13,19.
点击查看大图
计量
- 文章访问数: 215
- HTML全文浏览量: 40
- PDF下载量: 8
- 被引次数: 0