EFFECT OF NZVI ON ANAEROBIC DIGESTION SYSTEM WITH LOW ORGANIC SLUDGE AND ITS MICROBIAL COMMUNITY DIVERSITY
-
摘要: 采用投加不同剂量纳米零价铁(NZVI)(0,0.1,0.3,0.5 g/g VS)的低有机质污泥进行半连续中温厌氧消化试验,研究了反应器在不同NZVI投加量下的产甲烷特性及微生物群落变化。研究表明:NZVI的投加前期对产甲烷具有促进作用,随着反应器中NZVI累积逐渐对产甲烷产生抑制,且投加量越高抑制效果产生越早,抑制作用也越强。投加NZVI反应器未造成酸化或氨抑制,厌氧消化系统稳定性较好,系统上清液中磷酸盐去除率最高达到97.78%。NZVI的投加可以促进Firmicutes、Proteobacteria等水解产酸菌和Methanosarcina等多数氢营养型产甲烷菌的生长,而对严格的乙酸型产甲烷菌Methanosaeta生长有一定抑制作用。Abstract: In order to investigate the effects of nano-valent zero iron (NZVI) dosage on the reactor performance and microbial community diversity of mesophilic sludge anaerobic digester with low organic load, a series of lab-scale tests were carried out with four NZVI dosage of 0, 0.1, 0.3 and 0.5 g/g VS. Results showed that NZVI could promote methanogenesis in the early period, while with the accumulation of NZVI in the reactor, the methane production was gradually inhibited; and the higher the concentration of zero-valent iron, the stronger the inhibition. The addition of NZVI did not cause acidification or ammonia suppression. Noticeably, the anaerobic digestors had great stability and the removal rate of phosphate in supernatant could reach 97.78%. The addition of NZVI promoted the growth of hydrolytic acid-producing bacteria, such as Firmicutes, Proteobacteria, and the growth of hydrogenotrophic methanogens such as Methanosarcina, while it had inhibitory effect on the growth of Methanosaeta.
-
[1] XU R, YANG Z H, CHEN T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste under different fat, oil, grease contents:study on reactor performance and extracellular polymeric substances[J]. RSC Advances, 2015, 125(5):103547-103556. [2] YANG Z H, XU R, ZHENG Y, et al. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease[J]. Bioresource Technology, 2016, 212:164-173. [3] LIU C Y, Li H, ZHANG Y Y, et al. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste[J]. Bioresource Technology, 2016, 219:252-260. [4] LIAO X C, LI H. Biogas production from low-organic-content sludge using ahighsolids anaerobic digester with improved agitation[J]. Applied Energy, 2015, 15(148):252-259. [5] HUANG Y X, GUO J L, ZHANG C Y, et al. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion[J]. Water Research, 2016, 88:475-480. [6] HE C S, HE P P, YANG H Y, et al. Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge:From macroscopic to microcosmic investigation[J]. Water Research, 2017, 127:32-40. [7] XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology, 2019, 285:121351. [8] ZHANG M, LI J H, WANG Y C. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(10):10292-10305. [9] 方慧莹, 王瑞立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报, 2017, 68(7):2042-2048. [10] 苏润华, 丁丽丽, 任洪强. 纳米零价铁(NZVI)对厌氧产甲烷活性、污泥特性和微生物群落结构的影响[J]. 环境科学, 2018, 39(7):3286-3296. [11] YANG Y, GUO J L, HU Z Q. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion[J]. Water Research, 2013, 47(17):6790-6800. [12] XU R, YANG Z H, ZHENG Y, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome[J]. Bioresource Technology, 2018, 262:184-193. [13] XU R, YANG Z H, WANG Q P, et al. Rapid startup of thermophilic anaerobic digester to remove tetracycline and sulfonamides resistance genes from sewage sludge[J]. Science of the Total Environment, 2018, 612:788-798. [14] YU B, HUANG X T, ZHANG D L, et al. Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system[J]. RSC Adcances, 2016, 6(29):24236-24244. [15] ZHOU J, YOU X G, NIU B W, et al. Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron[J]. Science of the Total Environment, 2020, 703:135532. [16] ALOUN M, 杨朝晖, 徐锐,等. 猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响[J]. 环境工程学报, 2017(11):6014-6021. [17] KOSTERS I W, LETTINGA G. The influence of ammonium-nitrogen on the specific activity of palletized methanogenic sludge[J]. Agricultural Wastes, 1984, 9(3):205-216. [18] FENG Y H, ZHANG Y B, QUAN X, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014, 52:242-250. [19] 艾乐仙, 邓风, 胡潇鹏, 等. 废铁屑、还原铁粉对剩余污泥厌氧消化效果的研究[J]. 工业水处理, 2019, 39(3):69-72. [20] XU R, YANG Z H, ZHENG Y, et al. Depth-resolved microbial community analyses in the anaerobic co-digester of dewatered sewage sludge with food waste[J]. Bioresource Technology, 2017, 244:824-835. [21] 郭晓慧. 餐厨垃圾厌氧消化产甲烷工艺特性及其微生物学机理研究[D]. 杭州:浙江大学, 2014. [22] ARIESYADY H D, ITO T, OKABE S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J]. Water Research, 2007, 41(7):1554-1568. [23] MA J Y, GU J, WANG X J, et al. Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure[J]. Bioresource Technology, 2019, 289:121688. [24] ROS M, FRANKE-WHITTLE I H, MORALES A B, et al. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste[J]. Bioresource Technology, 2013, 136:1-7. [25] GUO X H, WANG C, SUN F Q, et al. A comparison of microbial characteristics between the thermophilic and mesophilic ana-erobic digesters exposed to elevated food was-te loadings[J]. Bioresource Technology, 2014, 152:420-428. [26] XIANG Y P, YANG Z H, ZHANG Y R, et al. Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, β-lactam resistance genes reduction[J]. Bioresource Technology, 2019, 294:122139.
点击查看大图
计量
- 文章访问数: 203
- HTML全文浏览量: 39
- PDF下载量: 6
- 被引次数: 0