中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于短程反硝化的生物脱氮技术研究进展

陈思宇 张绍青 陈鹏 陈秋丽 张立秋 李淑更

陈思宇, 张绍青, 陈鹏, 陈秋丽, 张立秋, 李淑更. 基于短程反硝化的生物脱氮技术研究进展[J]. 环境工程, 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
引用本文: 陈思宇, 张绍青, 陈鹏, 陈秋丽, 张立秋, 李淑更. 基于短程反硝化的生物脱氮技术研究进展[J]. 环境工程, 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006
Citation: CHEN Si-yu, ZHANG Shao-qing, CHEN Peng, CHEN Qiu-li, ZHANG Li-qiu, LI Shu-geng. RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 38-44. doi: 10.13205/j.hjgc.202105006

基于短程反硝化的生物脱氮技术研究进展

doi: 10.13205/j.hjgc.202105006
基金项目: 

国家自然科学基金项目(51708140,51478127);广州市科技计划项目(201510010051);中国博士后科学基金面上资助项目(2019M662839);广东省普通高校特色创新类项目(2018KTSCX100)。

详细信息
    作者简介:

    陈思宇(1996-),女,硕士研究生,主要研究方向为污水生物处理。a858334641@163.com

    通讯作者:

    李淑更(1978-),女,副教授,主要研究方向为水污染控制技术。lishugeng@gzhu.edu.cn

RECENT ADVANCES IN PARTIAL DENITRIFICATION BASED BIOLOGICAL NITROGEN REMOVAL

  • 摘要: 短程反硝化技术将硝酸盐还原的同时实现亚硝酸盐积累,不仅为厌氧氨氧化反应提供底物且能有效利用其反应产生的硝酸盐。因有机碳源需求少、反应速率高、污泥产量低及运行稳定等优点,短程反硝化具有重要的科学和工程意义,成为近年来的研究热点。介绍了短程反硝化技术的发展历程,从影响亚硝酸盐积累的环境因素及微生物群落结构等方面阐述了短程反硝化的原理,同时对现阶段短程反硝化存在的问题以及应用前景进行总结。最后对我国如何实现传统工艺向新兴高效的短程反硝化工艺的实践应用转型提出了建议。
  • [1] 顾芳,杜睿. 彭永臻团队首次实现短程反硝化有望推动厌氧氨氧化的应用和发展[J]. 给水排水, 2016,52(7):73.
    [2] MULDER A, GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995,16(3):177-183.
    [3] XU G J, ZHOU Y, YANG Q, et al. The challenges of mainstream deammonification process for municipal used water treatment[J]. Applied Microbiology and Biotechnology, 2015,99(6):2485-2490.
    [4] LIU T, HU S H, GUO J H. Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes[J]. Crit Rev Biotechnol, 2019,39(5):732-745.
    [5] LE T, PENG B, SU C Y, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox[J]. Water Environment Research, 2019,91(3):185-197.
    [6] GE S J, PENG Y Z, WANG S Y, et al. Nitrite accumulation under constant temperature in anoxic denitrification process:the effects of carbon sources and COD/NO3-N[J]. Bioresource Technology, 2012,114:137-143.
    [7] KALYUZHNYI S, GLADCHENKO M. DEAMOX-New microbiological process of nitrogen removal from strong nitrogenous wastewater[J]. Desalination, 2009,248(1/2/3):783-793.
    [8] KALYUZHNYI S V, GLADCHENKO M A, KANG H, et al. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents[J]. Water Science and Technology, 2008,57(3):323-328.
    [9] KALYUZHNYI S, GLADCHENKO M, MULDER A, et al. DEAMOX:new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Water Research, 2006,40(19):3637-3645.
    [10] CAO S B, LI B K, DU R, et al. Nitrite production in a partial denitrifying upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC)[J]. Water Research, 2016,90:309-316.
    [11] CAO S B, DU R K, LI B, et al. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater[J]. Applied Microbiology and Biotechnology, 2016,100(14):6457-6467.
    [12] HER J J, HUANG J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough[J]. Bioresource Technology, 1995,54(1):45-51.
    [13] 袁怡,黄勇,邓慧萍,等. C/N比对反硝化过程中亚硝酸盐积累的影响分析[J]. 环境科学, 2013,34(4):1416-1420.
    [14] DU R, PENG Y Z, CAO S B, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016,100(4):2011-2021.
    [15] SCHOPS M M R. Biological treatment of leachate from solid waste landfill sites:alterations in the bacterial community during the denitrification process[J]. Water Research, 1997,31(5):1164-1170.
    [16] CAO S B, WANG S Y, PENG Y Z, et al. Achieving partial denitrification with sludge fermentation liquid as carbon source:the effect of seeding sludge[J]. Bioresource Technology, 2013,149:570-574.
    [17] DU R, CAO S B, LI B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 2017,108,46-56.
    [18] 孙洪伟,王淑莹,王希明,等. 低温SBR反硝化过程亚硝态氮积累试验研究[J]. 环境科学, 2009,30(12):3619-3623.
    [19] 尚会来,彭永臻,张静蓉. 不同电子受体反硝化过程中C/N对N2O产量的影响[J]. 环境科学, 2009,30(7):2007-2012.
    [20] 曹相生,付昆明,钱栋,等. 甲醇为碳源时C/N对反硝化过程中亚硝酸盐积累的影响[J]. 化工学报, 2010,61(11):2938-2943.
    [21] 马勇,彭永臻,王淑莹. 不同外碳源对污泥反硝化特性的影响[J]. 北京工业大学学报, 2009,35(6):820-824.
    [22] FILIPPIS P D, PALMA L D, SCARSELLA M, et al. Biological denitrification of high-nitrate wastewater:a comparison between three electron donors[J]. Chemical Engineering Transactions (CET Journal), 2013,32:319-324.
    [23] SUN H W, YANG Q, PENG Y Z, et al. Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate[J]. Chinese Journal of Chemical Engineering, 2009,17(6):1027-1031.
    [24] M B. Effect of medium composition on the denitrification of nitrate by paracoccus denitrificans[J]. Applied and Environmental Microbiology, 1993,59(11):3951-3953.
    [25] VAN RIJN J T Y, BARAK Y. Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J]. Applied and Environmental Microbiology, 1996,62(7):2615-2620.
    [26] JI J T, PENG Y Z, WANG B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD)[J]. Bioresource Technology, 2017,224:140-146.
    [27] WANG X X, ZHAO J, YU D S, et al. Evaluating the potential for sustaining mainstream anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment[J]. Bioresource Technology, 2019,284:302-314.
    [28] LI W, LIU S, ZHANG M, et al. Oxidation of organic electron donor by denitratation:performance, pathway and key microorganism[J]. Chemical Engineering Journal, 2018,343:554-560.
    [29] CHEN J W, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochim Biophysica Acta(BBA)-Bioenergetics, 2013,1827(2):136-144.
    [30] QIAN W, MA B, LI X, et al. Long-term effect of pH on denitrification:high pH benefits achieving partial-denitrification[J]. Bioresource Technology, 2019,278:444-449.
    [31] SI Z, PENG Y Z, YANG A M, et al. Rapid nitrite production via partial denitrification:pilot-scale operation and microbial community analysis[J]. Environmental Science:Water Research & Technology, 2018,4(1):80-86.
    [32] SHI L L, DU R, PENG Y Z. Achieving partial denitrification using carbon sources in domestic wastewater with waste-activated sludge as inoculum[J]. Bioresource Technology, 2019,283:18-27.
    [33] PAN Y T, YE L, NI B J, et al. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012,46(15):4832-4840.
    [34] LI W, SHAN X Y, WANG Z Y, et al. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system:performance, microflora and enzymatic activities[J]. Water Research, 2016,88:758-765.
    [35] JI J T, PENG Y Z, WANG B, et al. Effects of salinity build-up on the performance and microbial community of partial-denitrification granular sludge with high nitrite accumulation[J]. Chemosphere, 2018,209:53-60.
    [36] CAO S B, DU R, LI B K, et al. Nitrite production from partial-denitrification process fed with low carbon/nitrogen (C/N) domestic wastewater:performance, kinetics and microbial community[J]. Chemical Engineering Journal, 2017,326:1186-1196.
    [37] LI W, LI H, LIU Y D, et al. Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox[J]. Environmental Science & Technology, 2018,52(18):10665-10672.
    [38] LIU B B, MAO Y J, BERGAUST L, et al. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes[J]. Environmental Microbiolgoy, 2013,15(10):2816-2828.
    [39] LE T, PENG B, SU C Y, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research, 2019,91(11):1455-1465.
    [40] MA B, XU X X, WEI Y, et al. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants[J]. Bioresource Technology, 2020,299:122697.
    [41] JI J T, PENG Y Z, MAI W K, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment[J]. Bioresource Technology, 2018,270:570-579.
    [42] MARTIENSSEN M, SCHÖPS R. Population dynamics of denitrifying bacteria in a model biocommunity[J]. Water Research, 1999,33(3):639-646.
    [43] LEE D Y, RAMOS A, MACOMBER L, et al. Taxis response of various denitrifying bacteria to nitrate and nitrite[J]. Applied and Environmental Microbiology, 2002,68(5):2140-2147.
  • 加载中
计量
  • 文章访问数:  529
  • HTML全文浏览量:  68
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-07
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回