中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧条件对热聚合法制备石墨相氮化碳光催化性能的影响及其机理

赵芳玉 胡筱敏 郭鹏瑶

赵芳玉, 胡筱敏, 郭鹏瑶. 焙烧条件对热聚合法制备石墨相氮化碳光催化性能的影响及其机理[J]. 环境工程, 2021, 39(5): 55-60,70. doi: 10.13205/j.hjgc.202105008
引用本文: 赵芳玉, 胡筱敏, 郭鹏瑶. 焙烧条件对热聚合法制备石墨相氮化碳光催化性能的影响及其机理[J]. 环境工程, 2021, 39(5): 55-60,70. doi: 10.13205/j.hjgc.202105008
ZHAO Fang-yu, HU Xiao-min, GUO Peng-yao. EFFECTS OF CALCINATION CONDITION ON PHOTOCATALYTIC PROPERTY OF G-C3N4 PREPARED THROUGH THERMAL POLYMERIZATION AND ITS MACHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 55-60,70. doi: 10.13205/j.hjgc.202105008
Citation: ZHAO Fang-yu, HU Xiao-min, GUO Peng-yao. EFFECTS OF CALCINATION CONDITION ON PHOTOCATALYTIC PROPERTY OF G-C3N4 PREPARED THROUGH THERMAL POLYMERIZATION AND ITS MACHANISM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 55-60,70. doi: 10.13205/j.hjgc.202105008

焙烧条件对热聚合法制备石墨相氮化碳光催化性能的影响及其机理

doi: 10.13205/j.hjgc.202105008
详细信息
    作者简介:

    赵芳玉(1995-),女,硕士研究生,主要研究方向为水污染控制。zfy15547998373@163.com

    通讯作者:

    胡筱敏(1958-),男,教授,主要研究方向为水污染控制。hxmin_jj@163.com

EFFECTS OF CALCINATION CONDITION ON PHOTOCATALYTIC PROPERTY OF G-C3N4 PREPARED THROUGH THERMAL POLYMERIZATION AND ITS MACHANISM

  • 摘要: 以三聚氰胺、硝酸为原料,采用热聚合法制备石墨相氮化碳(g-C3N4),研究了不同焙烧温度对石墨相氮化碳光催化性能的影响。利用扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射(UV-Vis DRS)以及光致发光光谱(PL)等技术对石墨相氮化碳样品的形貌、化学组成、晶体结构等理化性质进行表征,通过光催化降解实验探究石墨相氮化碳的催化活性。实验结果表明:当焙烧温度为550℃时,制备的石墨相氮化碳样品光催化性能最好。当催化剂投加量为0.04 g时,可见光照射50 min后,对50 mL浓度10 mg/L的罗丹明B(RhB)溶液的降解效率可达到91.7%。适宜的焙烧温度能够使光催化剂的光吸收能力增强,并促进光生电子(e-)和空穴(h+)分离。
  • [1] JIA L H, ZHANG H, WU P, et al. Graphite-like C3N4-coated transparent superhydrophilic glass with controllable superwettability and high stability[J]. Applied Surface Science, 2020,532:147309.
    [2] WANG J, FENG Y H, TIAN X H, et al. Disassembling and degradation of amyloid protein aggregates based on gold nanoparticle-modified g-C3N4[J]. Colloids and surfaces B:Biointerfaces, 2020, 192:111051.
    [3] WANG M,GUO P Y,ZHANG Y, et al. Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation[J].Applied Surface Science,2018, 453:11-22.
    [4] WANG M, GUO P Y, ZHANG Y, et al. Synthesis of hollow lantern-like Eu(Ⅲ)-doped g-C3N4 with enhanced visible light photocatalytic performance for organic degradation[J]. Journal of Hazardous Materials, 2018, 349:224-233.
    [5] WANG X C, MAEDA K, ARNE T, et al. A metal-free polymeric photoacatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8:76-80.
    [6] WANG F L, CHEN P, FENG Y P, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B:Environmental, 2017, 207:103-113.
    [7] DEVTHADE V, AKANKSHA G, ANIKET B, et al. 2D/2D Wg-C3N4/g-C3N4 composite as "Adsorb and Shuttle" model photocatalyst for pollution mitigation[J]. Journal of Photochemistry &Photobiology A:Chemistry, 2019, 370:117-126.
    [8] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction:Mechanism insight into enhanced peroxymonosulfate-mediated visible photocatalytic performance[J]. Chemical Engineering Journal, 2020, 298:125569.
    [9] XU D F, CHENG B, WANG W K, et al. Ag2CrO/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B:Environmental, 2018, 231(5):368-380.
    [10] CUI Y Q, ZHANG X Y, ZHANG H X, et al. Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B[J]. Separation and purifition Technology, 2019, 210:125-134.
    [11] GONG Y, LI H K, JIAO C, et al. Effective hydrogenation of g-C3N4 for enhanced photocatalytic performance revealed by molecular structure dynamics[J]. Applied Catalysis B:Environmental, 2020, 250:63-67.
    [12] ZENG Y X, LIU X, LIU C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B:Environmental, 2018, 224:1-9.
    [13] 马小帅,陈范云,余长林,等. Pt2+/Pt0掺杂g-C3N4光催化降解环丙沙星和偶氮染料[J]. 2020,36(2):217-225.
    [14] 时晓羽,李会鹏,赵华,等. 硫掺杂高比表面积g-C3N4的制备及其光催化性能的研究[J].现代化工,2020,40(4):167.
    [15] ZHOU P, MENG X L, LI L, et al. P, S Co-doped g-C3N4 isotype heterojunction composites for high-efficiency photocatalytic H2 evolution[J]. Journal of Alloys and Compounds, 2020, 827:154259.
    [16] SANTOSH K, ARABINDA, B, SURENDAR T, et al. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis[J]. Nanoscale, 2014, 9:4830-4832.
    [17] ZHENG Y, LIN L H, YE X J, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie, 2014, 126:12120-12124.
    [18] Chen Y L, Li J H, Hong Z H, et al. Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production[J].Physical chemistry chemical physics, 2014, 17:8106-8113.
    [19] MOHAMED R M, IBRAHIM F M. Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite[J]. Journal of Hazardous Materials, 2015, 22:28-33.
    [20] WU M, ZHANG J, HE B B, et al. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2019, 241:159-166.
    [21] TANG J Y, ZHOU W G, GUO R T, et al. An exploration on in-situ synthesis of europium doped g-C3N4 for photocatalytic water splitting[J]. Energy Procedia, 2019, 158:1553-1558.
    [22] LIANG Q H, LIU X J, WANG J J, et al. In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis:experiments and theories[J]. Journal of Hazardous Materials, 2021, 401:123355.
    [23] HU J S, ZHANG P F, AN W J, et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic[J]. Applied Catalysis B:Environmental, 2019, 245:130-142.
    [24] 郭鹏瑶,王敏,胡筱敏,等. 乙二胺四乙酸添加量对三维棒花状钒酸铋形貌及光催化活性的影响[J]. 硅酸盐学报,2018,12:1780-1787.
  • 加载中
计量
  • 文章访问数:  236
  • HTML全文浏览量:  33
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回