PREPARATION OF BIOMIMETIC MINERLIZED CELL PROTECTIVE SHELL AND ITS RESEARCH ADVANCES IN ENVIRONMENTAL MICROBIOLOGY
-
摘要: 自然界中部分生物体能够产生矿物质形成矿化保护壳,保护壳在提高生物体对外界不利环境的抗性和改善生命功能方面展现出良好的效果。为了利用保护壳的诸多优势,科研人员深入研究生物矿化机理,开发出多种仿生矿化方法,为不能自然产生矿化壳的生物体制备人工保护壳,具有保护壳的生物体在疾病治疗、环境保护和新能源等领域展现出广阔的应用前景。主要围绕微生物细胞保护壳的制备方法和功能价值进行讨论。首先从制备机理、制备过程和适用范围方面介绍细胞保护壳的主要制备方法,然后阐明矿化壳在保护细胞免受外界侵害和室温储存细胞方面的应用价值,最后对具有保护壳的微生物在环境污染治理方面的应用进行展望。Abstract: Some organisms in nature can produce minerals, which could form mineralized protective shells. The protective shells perform well in improving the resistance of the organisms to adverse external environments and life functions. In order to make better use of the advantages of protective shells, researchers have begun to study the biomineralization mechanism, and developed various biomimetic mineralization methods to make artificial protective shells for organisms that cannot produce mineral shells by themselves. These organisms with protective shells show broad application prospects in the fields of diseases treatment, environmental protection and new energies. This article mainly focuses on the preparation methods and application values of protective shells of microbial cells. Main methods of preparing protective shells were outlined from the aspects of the preparation mechanism, the specific procedure and the application scope. The value of the application of protective shells in both protecting cells from outside attack and saving cells at room temperature were then discussed. Finally, the application of microorganisms with protective shells in environmental pollution control was prospected.
-
[1] 李涵,姚奇志,周根陶.纳米尺度下的生物矿物和生物矿化:基于介晶的视角[J].地球科学,2018,43(5):67-80. [2] PALMER L C, NEWCOMB C J, KALTZ S R, et al. ChemInform abstract:biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel[J]. Chemical Reviews, 2010, 40(6):4754-4783. [3] LIU Z M, XU X R, TANG R K. Improvement of biological organisms using functional material shells[J]. Advanced Functional Materials, 2016, 26(12):1862-1880. [4] JI Z, ZHANG H, LIU H, et al. Cytoprotective metal-organic frameworks for anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42):10582-10587. [5] PARK J H, YANG S H, LEE J, et al. Nanocoating of single cells:from maintenance of cell viability to manipulation of cellular activities[J]. Advanced Materials, 2014, 26(13):2001-2010. [6] 吴洋,练继建,闫玥,等.巴氏芽孢八叠球菌及相关微生物的生物矿化的分子机理与应用[J].中国生物工程杂志,2017,37(8):96-103. [7] MANN S. Molecular recognition in biomineralization[J]. Nature, 1988, 332(6213):119-124. [8] 谢晓晓,马晓明,茹祥莉,等.基于细胞仿生矿化合成纳米材料及其应用[J].化学进展,2018,30(10):1511-1523. [9] CUÉLLAR-CRUZ M. Synthesis of inorganic and organic crystals mediated by proteins in different biological organisms. A mechanism of biomineralization conserved throughout evolution in all living species[J]. Progress in Crystal Growth and Characterization of Materials, 2017, 63(3):94-103. [10] CHEN L, LI J A, CHANG J W, et al. Mg-Zn-Y-Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility[J]. Science China Technological Sciences, 2018, 61(8):1228-1237. [11] 王天雷,刘梅堂,马鸿文.层层自组装技术制备类水滑石基新型薄膜材料的研究进展[J].化工进展,2013,32(7):1584-1603. [12] LUO Y, WANG J G, LIU B, et al. Effect of yeast cell morphology, cell wall physical structure and chemical composition on patulin adsorption[J]. PLoS ONE, 2015, 10(8):1-16. [13] WANG B, LIU P, JIANG W G, et al. Yeast cells with an artificial mineral shell:protection and modification of living cells by biomimetic mineralization[J]. Angewandte Chemie International Edition, 2008, 47(19):3560-3564. [14] YANG S H, LEE K B, KONG B, et al. Biomimetic encapsulation of individual cells with silica[J]. Angewandte Chemie International Edition, 2009, 48(48):9160-9163. [15] DENG F C, ZHANG Z F, YANG C, et al. Pyrene biodegradation with layer-by-layer assembly bio-microcapsules[J]. Ecotoxicology & Environmental Safety, 2017, 138:9-15. [16] MINER G E, SULLIVAN K D, GUO A, et al. Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion[J]. Molecular Biology of the Cell, 2018, 30(2):201-208. [17] MAHESHWARI V, FOMENKO D E, SINGH G, et al. Ion mediated monolayer deposition of gold nanoparticles on microorganisms:discrimination by age[J]. Langmuir, 2010, 26(1):371-377. [18] KEMPAIAH R, CHUNG A, MAHESHWARI V. Graphene as cellular interface:electromechanical coupling with cells[J]. ACS Nano, 2011, 5(7):6025-6031. [19] 李珍妮,邓字巍.仿贻贝黏附性多巴胺的研究与应用进展[J].高分子材料科学与工程,2015,31(1):185-190. [20] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426-430. [21] YANG S H, KANG S M, LEE K B, et al. Mussel-inspired encapsulation and functionalization of individual yeast cells[J]. Journal of the American Chemical Society, 2011, 133(9):2795-2797. [22] YAO J Y, WU T T, SUN Y, et al. A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine[J]. Talanta, 2019, 195:265-271. [23] BOROUMAND Y, RAZMJOUA A, MOAZZAM P, et al. Mussel inspired bacterial denitrification of water using fractal patterns of polydopamine[J]. Journal of Water Process Engineering, 2020, 30:101105-101116. [24] LI H M, BAI L R, DONG X Y, et al. SEM observation of early shell formation and expression of biomineralization-related genes during larval development in the pearl oyster Pinctada fucata[J]. Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2020, 33:100650-100661. [25] MVLLER W E G, ENGEL S, WANG X H, et al. Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene[J]. Biomaterials, 2008, 29(7):771-779. [26] GUAN C F, WANG G, JI J, et al. Bioencapsulation of living yeast (Pichia pastoris) with silica after transformation with lysozyme gene[J]. Journal of Sol-Gel Science and Technology, 2008, 48(3):369-377. [27] BRAUN S, BHATTACHARYYA S, DUCHEYNE P. 5.10 Encapsulation of cells (cellular delivery) using sol-gel silica[J]. Comprehensive Biomaterials Ⅱ, 2017, 5:175-186. [28] CARTURAN G, CAMPOSTRINI R, DIRÉS, et al. Inorganic gels for immobilization of biocatalysts:inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets[J]. Journal of Molecular Catalysis, 1989, 57(1):L13-L16. [29] NADINE N, CÉCILE R, THIBAUD C, et al. A sol-gel matrix to preserve the viability of encapsulated bacteria[J]. Journal of Materials Chemistry, 2003, 13(2):203-208. [30] ROOKE J C, LÉONARD A, MEUNIER C F, et al. Hybrid photosynthetic materials derived from microalgae Cyanidium caldarium encapsulated within silica gel[J]. Journal of Colloid & Interface Science, 2010, 344(2):348-352. [31] LOTFABAD T B, EBADIPOUR N, ROOSTAAZAD R, et al. Two schemes for production of biosurfactant from Pseudomon asaeruginosa MR01:applying residues from soybean oil industry and silica sol-gel immobilized cells[J]. Colloids and Surfaces B:Biointerfaces, 2017, 152:159-168. [32] 侯丹丹,刘大欢,阳庆元,等.金属-有机骨架材料在气体膜分离中的研究进展[J].化工进展,2015,34(8):2907-2914. [33] LIANG K, RICCO R, DOHERTY C M, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules[J]. Nature Communications, 2016, 6:7240-7248. [34] BLOCH E D, QUEEN W L, KRISHNA R, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335(6076):1606-1610. [35] REINSCH H, WAITSCHAT S, STOCK N. Mixed-linker MOFs with CAU-10 structure:synthesis and gas sorption characteristics[J]. Dalton Transactions, 2012, 42(14):4840-4847. [36] DENG H X, DOONAN C J, FURUKAWA H, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010, 327(5967):846-850. [37] MAYNE C G, ARCARIO M J, MAHINTHICHAICHAN P, et al. The cellular membrane as a mediator for small molecule interaction with membrane proteins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2016, 1858(10):2290-2304. [38] YANG X X, XIAO J. Dynamics of bacterial cell wall synthesis proteins during cytokinesis[J]. Biophysical Journal, 2019, 116(No.3Suppl1):325a. [39] LIANG K, RICHARDSON J J, CUI J, et al. Metal-organic framework coatings as cytoprotective exoskeletons for living cells[J]. Advanced Materials, 2016, 28(36):7910-7914. [40] LIANG K, RICHARDSON J J, DOONAN C J, et al. An enzyme-coated metal-organic framework shell for synthetically adaptive cell survival[J]. Angewandte Chemie, 2017, 129(29):8630-8635. [41] KHANNA N, LINDBLAD P. Cyanobacterial hydrogenases and hydrogen metabolism revisited:recent progress and future prospects[J]. International Journal of Molecular Sciences, 2015, 16(5):10537-10561. [42] ZHANG Q T, WANG M M, MA X Y, et al. High variations of methanogenic microorganisms drive full-scale anaerobic digestion process[J]. Environment International, 2019, 126:543-551. [43] 丁继业.功能性细菌纤维素材料的制备及其表征[D].上海:东华大学,2016. [44] CORDENTE A G, BORNEMAN A R, BARTEL C, et al. Inactivating mutations in Irc7p are common in wine yeasts, attenuating carbon-sulfur β-lyase activity and volatile sulfur compound production[J]. Applied and Environmental Microbiology, 2019, 85(6):1-42. [45] HONG D, LEE H, KO E H, et al. Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells[J]. Chemical Science, 2015, 6(1):203-208. [46] GAO K S, BEARDALL J, HAEDER D P, et al. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation[J]. Frontiers in Marine Science, 2019, 6:219-225. [47] ZHANG B, SUN Z, BAI Y T, et al. One-step deposition of melanin-like polymer on individual Escherichia coli cells exhibiting a special effect of UV resistance[J]. RSC Advances, 2016, 6(82):78378-78384. [48] JOHNSON P E, MUTTIL P, MACKENZIE D, et al. Spray-dried multiscale nano-biocomposites containing living cells[J]. ACS Nano, 2015, 9(7):6961-6977. [49] SIMÓ G, VILA-CRESPO J, FERNÁNDEZ-ERNÁNDEZ E, et al. Highly efficient malolactic fermentation of red wine using encapsulated bacteria in a robust biocomposite of silica-alginate[J]. Journal of Agricultural and Food Chemistry, 2017, 65(25):5188-5197. [50] KIM B J, PARK T, MOON H C, et al. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation[J]. Angewandte Chemie, 2014, 126(52):14671-14674. [51] CICERONE M, GIRI J, SHAKED Z, et al. Protein stability-an underappreciated but critical need for drug delivery systems[J]. Advanced Drug Delivery Reviews, 2015, 93:1. [52] KO E H, YOON Y, PARK J H, et al. Bioinspired, cytocompatible mineralization of silica-titania composites:thermoprotective nanoshell formation for individual chlorella cells[J]. Angewandte Chemie, 2013, 52(47):12279-12282. [53] WANG G C, WANG L J, LIU P, et al. Extracellular silica nanocoat confers thermotolerance on individual cells:a case study of material-based functionalization of living cells[J]. Chembiochem, 2010, 11(17):2368-2373. [54] 陈蕊,刘见桥,杜红姿.人类卵母细胞冷冻保存技术的安全性及其临床应用[J].中化生殖与避孕杂志,2018,38(10):806-811. [55] PLODSOMBOON S, MAEDA-MARTÍNEZ A M, OBREGÓN-BARBOZA H, et al. Reproductive cycle and genitalia of the fairy shrimp branchinella thailandensis (branchiopoda:anostraca)[J]. Journal of Crustacean Biology, 2012, 32(5):711-726. [56] YOUN W, KO E H, KIM M H, et al. Cytoprotective encapsulation of individual Jurkat T cells within durable TiO2 shells for T cell therapy[J]. Angewandte Chemie International Edition, 2017, 56(36):10842-10846. [57] MEYERS A, FURTMANN C, JOSE J. Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications[J]. Enzyme and Microbial Technology, 2018, 118:1-5.
点击查看大图
计量
- 文章访问数: 250
- HTML全文浏览量: 27
- PDF下载量: 3
- 被引次数: 0