DYNAMIC CHARACTERISTICS OF FLOW FIELD AND CLEANING PRESSURE BASED ON SCATTERING STRUCTURE
-
摘要: 针对传统脉冲清灰中存在清灰不均匀的问题,应用上部开口散射器改善滤筒内部流场特性,从而改善清灰效果。通过数值模拟方法研究不同工况下滤筒内部脉冲流场及清灰压力的动态变化规律,探究清灰压力峰值形成机理。结果表明:脉冲喷吹气流以压力波的方式进入滤筒并向侧壁传递,而侧壁处气流径向速度与相同测点的清灰压力随时间等比例同步变化,两者存在直接关联。由于散射器对脉冲喷吹气流的分流和导流作用,相对无散射器而言,滤筒上部径向速度提高,清灰压力相应增大,其峰值由484 Pa增至744 Pa,增加了53.7%;滤筒中、下部,散射器的存在使脉冲喷吹流量和轴向速度减小,降低了脉冲气流对滤筒内部气流的压缩作用,滤筒中下部压力降低,滤筒下部清灰压力峰值由2175 Pa减小至1468 Pa,减小了32.5%。因此增设散射器可以在满足清灰要求的同时明显提高脉冲清灰的均匀性。Abstract: In order to solve the problem of non-uniformity in the traditional pulse cleaning, the upper open scatter had been proposed to improve the internal flow field characteristics of the filter cartridge, so as to improve the cleaning efficiency. By numerical simulation method, the dynamic changes of pulse flow field and the dust cleaning pressure in the filter cartridge under different conditions were investigated, and the formation mechanism of the peak pressure of ash cleaning was explored. The results showed that the pulse-jet flow entered the filter cartridge in the form of pressure wave and transferred to the sidewall, and the pressure and radial velocity of the sidewall changed synchronously with time, and there was a direct connection between them. As a result of the diverting and guiding effect of the scatter on the jet flow, compared with no scatter case, the radial velocity of the upper part of the filter cartridge increased, thus dust cleaning pressure increased correspondingly, which the dust cleaning pressure increased from 484 Pa to 744 Pa, by 53.7%. On the contrary, the flow rate and axial velocity of the impulse injection in the middle and lower part of the filter cartridge would be reduced, the compression effect of the impulse airflow on the gas inside the filter cartridge would be reduced as well. The pressure in the middle and lower parts would be reduced respectively, and the pressure peak in the lower part decreased from 2175 Pa to 1468 Pa, by 32.5%. Therefore, adding a scatterer could obviously improve the uniformity of pulse ash cleaning and meet the requirements of ash cleaning.
-
Key words:
- upper opening scatter /
- pulsed flow field /
- dust cleaning pressure /
- dynamic law /
- cleaning efficiency
-
[1] 张卫东, 苏海佳, 高坚. 袋式除尘器及其滤料的发展[J]. 化工进展, 2003,22(4):380-384. [2] 范兰, 王加东, 陈立萍, 等. 矿用干式除尘器的研发与应用[J]. 环境工程, 2014, 32(1):80-83,63. [3] SCHILDERMANS I, BAEYENS J, SMOLDERS K. Pulse jet cleaning of rigid filters:a literature review and introduction to process modelling[J]. Filtration and Separation, 2004, 41(5):26-33. [4] SIMON X, BÉMER D, CHAZELET S, et al. Consequences of high transitory airflows generated by segmented pulse-jet cleaning of dust collector filter bags[J]. Powder Technology, 2010, 201(1):37-48. [5] THÉRON F, JOUBERT A, LE COQ L. Numerical and experimental investigations of the influence of the pleat geometry on the pressure drop and velocity field of a pleated fibrous filter[J]. Separation and Purification Technology, 2017, 182:69-77. [6] LI S H, ZHOU F B, XIE B, et al. Influence of injection pipe characteristics on pulse-jet cleaning uniformity in a pleated cartridge filter[J]. Powder Technology, 2018, 328:264-274. [7] 胥海伦, 周苗苗, 张情,等. 开口散射器对滤筒除尘清灰性能影响的数值模拟[J]. 工业安全与环保, 2018, 44(6):53-57. [8] QIAN Y L, CHEN H Y, DAI H D, et al. Experimental study of the nozzle settings on blow tube in a pulse-jet cartridge filter[J]. Separation and Purification Technology, 2018, 191:244-249. [9] QIAN Y L, BI Y X, ZHANG Q, et al. The optimized relationship between jet distance and nozzle diameter of a pulse-jet cartridge filter[J]. Powder Technology, 2014, 266:191-195. [10] 万凯迪, 王智化, 胡利华, 等. 袋式除尘器脉冲喷吹清灰过程的数值模拟[J]. 中国电机工程学报, 2014, 34(23):3970-3976. [11] YAN C P, LIU G J, CHEN H Y. Effect of induced airflow on the surface static pressure of pleated fabric filter cartridges during pulse jet cleaning[J]. Powder Technology, 2013, 249:424-430. [12] 张情, 钱云楼, 毕远霞, 等. 诱导喷嘴改进滤筒清灰效果的数值模拟[J]. 环境工程学报, 2014, 8(7):2975-2979. [13] CHEN S W, CHEN D R. Annular-slit nozzles for reverse flow cleaning of pleated filter cartridges[J]. Separation and Purification Technology, 2017, 177:182-191. [14] 胡峰源, 谭志洪, 熊桂龙, 等. 用于袋式除尘器的拉瓦尔型喷嘴脉冲清灰性能分析[J]. 环境工程, 2019, 37(6):117-122. [15] CHEN S W, WANG Q, CHEN D R. Effect of pleat shape on reverse pulsed-jet cleaning of filter cartridges[J]. Powder Technology, 2017, 305:1-11. [16] 张亚蕊, 韩云龙, 钱付平, 等. 新型滤筒除尘器性能的数值模拟[J]. 过程工程学报, 2016, 16(1):48-54. [17] 周福宝, 李建龙, 李世航, 等. 综掘工作面干式过滤除尘技术实验研究及实践[J].煤炭学报, 2017, 42(3):639-645. [18] 陈路敏,钱付平,叶蒙蒙, 等. 脉冲喷吹清灰高湿粉尘剥落的数学模型研究[J]. 煤炭学报, 2019, 44(增刊2):683-690. [19] MAI R, LEIBOLD H, SEIFERT H, et al. Coupled pressure pulse (CPP) recleaning system for ceramic hot-gas filters with an integrated safety filter[J]. Chemical Engineering & Technology, 2010, 26(5):577-579. [20] 栾鑫, 姬忠礼, 刘龙飞. 刚性过滤器脉冲反吹过程中滤管内动态压力特性[J]. 化工学报, 2016, 67(8):3452-3458. [21] LI J L, WANG P, WU D S, et al. Numerical study of opposing pulsed-jet cleaning for p leated filter cartridges[J]. Separation and Purification Technology, 2020, 234:116086. [22] 颜翠平. 脉冲喷吹褶皱式滤筒的清灰效果及机理研究[D]. 合肥:中国科学技术大学, 2014. [23] 巨敏, 张明星, 陈俊东, 等. 滤筒除尘器脉冲清灰动态分析[J]. 环境工程学报, 2013, 7(3):1091-1094. [24] 叶青. 袋式除尘器过滤清灰过程流场特性的数值模拟研究[D]. 南昌:南昌大学, 2012. [25] 余洪浪. 基于上部开口散射器的脉冲喷吹清灰特性研究[D]. 绵阳:西南科技大学, 2020. [26] SIEVERT J, LOFFLER F. Fabric cleaning in pulse-jet filters[J]. Chemical Engineering & Processing Process Intensification, 1989, 26(2):179-183. [27] 李坦, 靳世平, 黄素逸, 等. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电, 2013, 42(11):60-63. [28] 刘东, 余洪浪, 王令, 等. 上部开口散射器提高脉冲喷吹清灰性能实验[J]. 环境工程, 2019, 37(8):138-142. 期刊类型引用(19)
1. 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 . 百度学术
2. 游洋洋,张涛,梁增强,霍宁. 我国农田土壤中微塑料污染研究进展与环境管理现状. 环境生态学. 2024(02): 101-106 . 百度学术
3. 朱晓艳,王琪琛,姜懿真,武忠,柳钟惠,陈吉孝,王钰琳,袁宇翔. 微塑料对稻田土壤-水界面重金属分布及迁移的影响. 水生态学杂志. 2024(03): 10-20 . 百度学术
4. 温浩军,陈学庚,陈浩,缑海啸. 农田地膜回收机械应用现状与发展. 农业环境科学学报. 2024(06): 1271-1277 . 百度学术
5. 黄茜,张俏俏,颜瑾,马晶晶,罗泽娇. 武汉农用地土壤中微塑料污染状况和生态风险初探. 环境工程. 2024(06): 136-145 . 本站查看
6. 熊新港,殷伟庆,常铖炜,王超,林华星,赵文青,李冠霖,解清杰. 农田土壤微塑料的检测及环境行为研究进展. 土壤通报. 2024(03): 886-900 . 百度学术
7. 杨文硕,梁鑫,王旭刚,石兆勇,杜鹃. 微塑料对土壤理化性质和生物特性的影响及其降解研究进展. 江苏农业科学. 2024(16): 20-29 . 百度学术
8. 路浩东,赵少婷,张俊丽,王蕊,贾汉忠,代允超. 不同类型地膜降解规律及其对土壤理化性质的影响. 农业资源与环境学报. 2024(05): 1171-1181 . 百度学术
9. 张茵,侯建平. 试论生态环境保护视域下农业生产用地土壤中塑料微粒污染问题. 中国农业综合开发. 2024(10): 40-45 . 百度学术
10. 张蕾,孙东,张建强,朱艳宏,陆一新,李经涵,何杨. 农膜微塑料与酞酸酯在土壤中迁移的研究进展. 土壤. 2024(05): 938-947 . 百度学术
11. 姜晓旭,封雪,周笑白,袁广旺,李宗超,郑明辉,李名升. 土壤中微塑料污染现状与检测技术研究进展. 环境化学. 2023(01): 163-175 . 百度学术
12. 邓爱琴,赵保卫,朱正钰,段凯祥,张鑫,索进苗,杨茂莺,杨佳妮. 土壤中微塑料的来源与其生态毒理效应研究进展. 环境化学. 2023(02): 345-357 . 百度学术
13. 仲子文,李冰,李彦,李德伟,刘延美,颜晓,刘宾绪,刘兆东,王艳芹,孙斌,薄录吉. 我国农田土壤微塑料和重金属污染现状与研究展望. 山东农业科学. 2023(02): 165-172 . 百度学术
14. 史增录,张学军,程金鹏,周鑫城,张朝书. 垂直双排链式残膜回收机输膜卸膜装置设计与试验. 干旱地区农业研究. 2023(03): 257-265 . 百度学术
15. 陈方涛,刘振鹏,金荣荣,吕军. 浅议潍坊市农村生态环境污染成因及治理经验. 南方农业. 2023(07): 90-92+100 . 百度学术
16. 刘明宇,郑旭,强丽媛,李鲁华,张若宇,王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析. 生态环境学报. 2023(11): 2050-2061 . 百度学术
17. 臧宇飞,李一凡,吴金柱,徐保建,陈飞勇,王静,邵媛媛,宋扬,王全勇,张瑞娜,刘兵. 城镇有机垃圾热解工艺研究进展. 当代化工. 2022(04): 928-935 . 百度学术
18. 张琳,王斯腾,马丽新. 一次性聚丙烯餐盒中汞、砷迁移量分析研究. 环境科技. 2022(03): 69-72 . 百度学术
19. 贾涛,薛颖昊,靳拓,鲁天宇. 土壤中微塑料的来源、分布及其对土壤潜在影响的研究进展. 生态毒理学报. 2022(05): 202-216 . 百度学术
其他类型引用(25)
-

计量
- 文章访问数: 174
- HTML全文浏览量: 17
- PDF下载量: 2
- 被引次数: 44