中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾

宋彩红 齐辉 魏自民 夏训峰

宋彩红, 齐辉, 魏自民, 夏训峰. 耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾[J]. 环境工程, 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
引用本文: 宋彩红, 齐辉, 魏自民, 夏训峰. 耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾[J]. 环境工程, 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
Citation: SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015

耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾

doi: 10.13205/j.hjgc.202105015
基金项目: 

国家水体污染控制与治理科技重大专项(2015ZX07103-007-03);国家自然科学基金(51978131)。

详细信息
    作者简介:

    宋彩红(1986-),女,博士,讲师,主要研究方向为固废资源化。

    通讯作者:

    夏训峰,男,博士,研究员,主要研究方向为村镇环境综合治理。xiaxunfengg@sina.com.cn

HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM

  • 摘要: 为进一步提升全程高温堆肥效率,经筛选和高温驯化,获得高有机质降解效率的耐热复合菌系(TMC),设置全程高温接种TMC堆肥组(T1)、全程高温堆肥组(T2)和常温堆肥组(T3),通过理化指标、粗脂肪和粗蛋白含量、GI等指标的检测和优势细菌演替规律分析,以揭示TMC对全程高温堆肥工艺的影响。结果显示:堆肥结束后有机质含量、C/N、粗脂肪和蛋白含量降幅顺序均为T1>T2>T3(P<0.05),且两两处理之间均具有显著性差异,证明TMC可缩短全程高温堆肥进程。堆肥第14天,T1、T2处理的GI值分别为110%和99%,T3处理仅为80%,表明全程高温堆肥可加速植物毒性物质降解,显著提高堆肥品质,而TMC接种可进一步促进堆肥无害化。PCR-DGGE结果表明:T1、T2处理均显著提高了耐热细菌和耐热木质纤维素降解菌多样性,且并未降低嗜中温木质纤维素降解菌多样性;2类降解菌协同配合实现木质纤维素的更快降解,有利于缩短堆肥进程。综上所述,TMC接种可显著提高全程高温堆肥效率、提升堆肥品质。
  • [1] KENG Z X, CHONG S, NG C G, et al. Community-scale composting for food waste:a life-cycle assessment-supported case study[J]. Journal of Cleaner Production, 2020, 261:121220.
    [2] NAKASAKI K, HIRAI H, MIMOTO H, et al. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting[J]. Science of the Total Environment, 2019, 671:1237-1244.
    [3] 石文军. 全程高温好氧堆肥快速降解城市生活垃圾及其腐熟度判定[D]. 长沙:湖南大学, 2010.
    [4] 薛兆骏, 彭永臻, 王鹏鹞, 等. 自发热持续高温好氧堆肥碳、氮、腐植酸变化过程[J]. 中国环境科学, 2018, 38(11):4094-4098.
    [5] 薛兆骏, 周国亚, 俞肖峰, 等. 超高温自发热好氧堆肥工艺处理剩余污泥[J]. 中国环境科学, 2017, 37(9):3399-3406.
    [6] 王晓诚, 郭颖, 颜开红. 超高温自发热好氧堆肥工艺处理生活垃圾的探究[J/OL]. 环境工程, https://kns.cnki.net/kcms/detail/11.2097.X.20200616.1039.006.html.
    [7] 石文军, 杨朝晖, 肖勇,等. 全程高温好氧堆肥快速降解城市生活垃圾[J]. 环境科学学报, 2009,29(10):2126-2133.
    [8] SONG C H, LI M X, JIA X, et al. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes:anaerobic digestion residue, pig manure and chicken manure[J]. Microbial Biotechnology, 2014, 7(5):424-433.
    [9] SONG C H, ZHANG Y L, XIA X F, et al. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste[J]. Microbial Biotechnology, 2018, 11(6):1124-1136.
    [10] 宋彩红, 张亚丽, 李鸣晓, 等. 抗酸化微生物复合菌系对餐厨垃圾堆肥腐殖质组分光谱学性质的影响[J].光谱学与光谱分析, 2019, 39(11):3533-3539.
    [11] BRABSON J A. The kjeldahl method for organic nitrogen[J]. Journal of AOAC International, 1966, 49(2):481-481.
    [12] HAWTHORNE S B, GRABANSKI C B, MARTIN E, et al. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids:recovery, selectivity and effects on sample matrix[J]. Journal of Chromatography A, 2000, 892(1):421-433.
    [13] SAIDPULLICINO D, ERRIQUENS F G, GIGLIOTTI G, et al. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity[J]. Bioresource Technology, 2007, 98(9):1822-1831.
    [14] SONG C H, LI M X, XI B D, et al. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques[J]. International Biodeterioration & Biodegradation, 2015, 103:38-50.
    [15] HOSSEINI S M, AZIZ H A. Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement[J]. Bioresource Technology, 2013, 133:240-247.
    [16] TRAN Q N, MIMOTO H, KOYAMA M, et al. Lactic acid bacteria modulate organic acid production during early stages of food waste composting[J]. Science of the Total Environment, 2019, 687:341-347.
    [17] GARCIA-GÓMEZ A, ROIG A, BERNAL M P. Composting of the solid fraction of olive mill wastewater with olive leaves:organic matter degradation and biological activity[J]. Bioresource Technology, 2003, 86(1):59-64.
    [18] AWASTHI M K, CHEN H Y, WANG Q, et al. Succession of bacteria diversity in the poultry manure composted mixed with clay:Studies upon its dynamics and associations with physicochemical and gaseous parameters[J]. Bioresource Technology, 2018, 267:618-625.
    [19] KOYAMA M, NAGAO N, SYUKRI F, et al. Effect of temperature on thermophilic composting of aquaculture sludge:NH3 recovery, nitrogen mass balance, and microbial community dynamics[J]. Bioresource Technology, 2018, 265:207-213.
    [20] TORTOSA G, CASTELLANOHINOJOSA A, CORREAGALEOTE D, et al. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing[J]. Bioresource Technology, 2017, 224:101-111.
    [21] MA C F, LO P K, XU J Q, et al. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting[J]. Bioresource Technology, 2020, 314:123731.
    [22] AKYOL Ç, INCE O, INCE B. Crop-based composting of lignocellulosic digestates:Focus on bacterial and fungal diversity[J]. Bioresource Technology, 2019, 288:121549.
    [23] DING J L, WEI D, AN Z Z, et al. Succession of the bacterial community structure and functional prediction in two composting systems viewed through metatranscriptomics[J]. Bioresource Technology, 2020, 313:123688.
    [24] KARADAG D, ÖZKAYA B, ÖLMEZ E, et al. Profiling of bacterial community in a full-scale aerobic composting plant[J]. International Biodeterioration & Biodegradation, 2013, 77:85-90.
    [25] SONG C H, LI M X, QI H, et al. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting[J]. Bioresource Technology, 2018, 259:1-9.
  • 期刊类型引用(12)

    1. 孙玉鑫,常瑞雪,李季,李彦明. 园林绿化垃圾堆肥化处理的优化策略研究. 中国农业大学学报. 2024(03): 63-78 . 百度学术
    2. 蒋团标,钟敏,马国群. 数字经济对农业绿色全要素生产率的影响——基于土地经营效率的中介作用分析. 中国农业大学学报. 2024(04): 27-39 . 百度学术
    3. 王强,吴娅楠,张培圆,陈洲,刘恒宇,梁剑光. 施加菌肥对黄瓜生长特性及产量影响的田间试验. 农业与技术. 2023(01): 30-33 . 百度学术
    4. 陶兴玲,詹亚斌,王宁,丁晓艳,丁国春,魏雨泉,李季,朱廷恒,徐道青. 耐热菌剂对堆肥有机质降解及细菌演替的影响. 科学技术与工程. 2023(14): 6264-6270 . 百度学术
    5. 李妍,崔洪金,王俊鹏,庄儒国,朱德江,吴迪. 餐厨垃圾、农业废弃物与奶牛粪便好氧发酵过程质量变化研究. 农业工程. 2023(06): 37-42 . 百度学术
    6. 丁晓艳,王越,王宁,李婉婷,丁国春,李季. 外接堆肥微生物在餐厨废弃物好氧堆肥中的应用. 生物技术通报. 2022(05): 47-55 . 百度学术
    7. 陈诺,郑纯杰,杨晓茵,朱慧萍,罗俊涛,秦建桥,刘沙沙. 微生物菌剂在堆肥中的应用研究进展. 山东化工. 2022(12): 100-102 . 百度学术
    8. 黄松,叶劲松,王玉峰,卫新来,金杰,肖青青. 厨余垃圾好氧生物处理技术研究综述. 唐山师范学院学报. 2022(03): 50-53+111 . 百度学术
    9. 许继峰,王姝蕴. 基于AHP-TRIZ的家庭厨余智能回收产品设计. 机械设计. 2022(09): 128-134 . 百度学术
    10. 周志强,刘瑜,冯华奇,赵鹏,薛飞燕. 园林落叶和EM菌剂对餐厨垃圾堆肥的影响. 北京农学院学报. 2022(04): 1-5 . 百度学术
    11. 屈阳,朱卫兵,常燕青,吴元,彭明国,顾晓涛,孙荣. 餐厨垃圾固渣DANO动态堆肥处理效果研究. 环境工程. 2022(12): 46-52+104 . 本站查看
    12. 解新宇,赵越,张书博,杨红宇,魏自民,张旭,赵丽. 低温菌强化堆肥起爆进程中细菌群落响应机制. 农业环境科学学报. 2021(11): 2395-2404 . 百度学术

    其他类型引用(4)

  • 加载中
计量
  • 文章访问数:  301
  • HTML全文浏览量:  78
  • PDF下载量:  5
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-08-05
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回