IMPACT OF BIOLEACHING WITH FAS+S0 ON EPS AND DEWATERABILITY OF SEWAGE SLUDGE
-
摘要: 为研究以硫酸亚铁铵(FAS)+硫粉(S0)为底物的生物沥浸过程中,污泥的脱水性能及其与胞外聚合物(EPS)中蛋白质(PN)、多糖(PS)的关系,设计了新鲜污泥、新鲜污泥+10%接种物、新鲜污泥+10%接种物+(0,2,4,6 g/L)FAS+(0,2,4,6 g/L)S0的3个实验组进行10 d沥浸实验。结果表明:投加量为4g/L FAS+2 g/L S0,沥浸时间为6 d时污泥脱水性能最佳,污泥比阻(SRF)和黏度较原始污泥分别下降了83.11%和65.74%。EPS中溶解态PN、PS和结合态PN、PS的含量都随沥浸实验的进行而改变,其中溶解态PS与黏度、SRF呈显著负相关(R分别为-0.813、-0.813,P<0.05),说明溶解态PS的含量是影响污泥脱水性能的主要因素。进一步分析得出,溶解态PS总量随沥浸时间延长而升高,其中疏水性PS的占比随之增加,污泥脱水性相应改善。Abstract: To investigate the dewatering performance of sewage sludge and the relationship between dewaterability with protein (PN) and polysaccharide (PS) of extracellular polymers (EPS) in bioleaching process, in which ferrous ammonium sulfate (FAS) and sulfur powder (S0) were supplied as substrates, raw sludge was bioleached with 10% inoculum+(0, 2 g/L, 4 g/L, 6 g/L) FAS+(0 g/L, 2 g/L, 4 g/L, 6 g/L) S0. Meanwhile, the raw sludge and raw sludge with 10% inoculum were designed as control groups. Results showed that the best bioleaching process condition was 4 g/L FAS+2g/L S0 for 6 days, and then SRF and viscosity decreased by 83.11% and 65.74%, respectively. Both dissolved and bound PN and PS content in EPS changed with the bioleaching progress, which influenced the SRF and viscosity of sludge. It was determined that dissolved PS was negatively correlate with SRF and viscosity(R=-0.813、-0.813,P<0.05),suggesting that the content of dissolved PS was the main factor affecting the dewaterability of sludge. Subsequent experiments showed that more hydrophobic PS was produced together with the dissolved PS with the bioleaching progress, contributing to the improvement of dewatering performance of sludge.
-
Key words:
- sludge dewatering performance /
- FAS+S0 /
- protein /
- polysaccharide /
- hydrophilicity and hydrophobicity
-
[1] 郭广慧,陈同斌,杨军,等.中国城市污泥重金属区域分布特征及变化趋势[J]. 环境科学学报, 2014,34(10):2455-2461. [2] GU T Y, RASTEGER S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018,261:428-440. [3] MEHROTRA A, SREEKRISHNAN T R. Heavy metal bioleaching and sludgestabilization in a single-stage reactor using indigenous acidophilic heterotrophs[J]. Environmental Technology, 2017,38(21):1-16. [4] DENG X H, CHAI L Y, YANG Z H, et al. Bioleaching mechanism of heavymetals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1[J]. Journal of Hazardous Materials, 2013,248/249(15):107-114. [5] 甘莉,刘贺琴,王清萍,等.氧化亚铁硫杆菌生物浸出污泥中的重金属离子[J]. 中国环境科学, 2014,34(10):2617-2623. [6] 向少云,田永静,夏晶,等.生物沥滤法对剩余污泥中重金属及养分含量的影响[J].中国给水排水,2018,34(1):20-25. [7] ELISABETH NEYENS, JAN BAEYENS, RAF Dewil, et al. Ad-vanced sludge treatment affects extracellular polymericsubstances to improve activated sludge dewatering[J].Journal of Hazardous Materials, 2004, 106B:83-92. [8] HUO M B, ZHENG G Y, ZHOU L X. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content[J]. Bioresource Technology, 2014,168:190-197. [9] DAI Q X, MA L P, REN N Q, et al. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum[J]. Water Research, 2018,142:337-346. [10] 周俊,周立祥,黄焕忠,等.污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013,34(7):2752-2757. [11] ZHEN G Y, LU X Q, LI Y Y, et al. Innovative combination of electrolysis and Fe(Ⅱ)-activatedpersulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136:654-663. [12] WANG X M, WANG X, YANG M H, et al. Sludge conditioning performance of polyaluminum, polyferric, and titanium xerogel coagulants[J]. Environmental Science, 2018,39(5):2274-2282. [13] 夏晶,田永静,王骁,等.生物淋滤中硫粉对污泥EPS组分和脱水性的影响[J].中国环境科学,2019,39(2):619-624. [14] WINGENDER J, NEU T R, FLEMMING H C. Microbial extracellular polymeric substances, characterization, structure and function[M]. Springer Berlin Heidelberg, 1999,88(1):45-53. [15] 王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J]. 清华大学学报(自然科学版), 2004,44(6):766-769. [16] 华玉妹,陈英旭,张少辉.污泥生物沥滤中硫细菌变化和胞外多聚物作用的研究[J]. 中国环境科学, 2011,31(5):795-802. [17] 周立祥. 污泥生物沥浸处理技术及其工程应用[J]. 南京农业大学学报, 2012,35(5):154-166. [18] 刘昌庚.基于生物淋滤的城市污泥调理技术[D]. 长沙:湖南大学,2010. [19] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951,193(1):265-275. [20] GAUDY A F. Colorimetric determination of protein and carbohydrate[J]. Industrial Water Wastes, 1962,7(1):17-22. [21] 李金印. 胞外聚合物及其表面性质对活性污泥絮凝沉降性能的影响研究[D].重庆:重庆大学, 2008. [22] 黄晓婷, 袁海平, 周熠鸣, 等. 基质投加量对生物调理改善污泥脱水性能的影响[J]. 环境科学学报, 2017,37(6):2137-2142. [23] CHEN Y G, YANG H Z, GU G W. Effect of acid and surfactant treatment on activated sludge dewatering and settling[J]. Water Research, 2001,35(11):2615-2620. [24] ZITA A,HERMANSSON M. Effects ofbacterial cell surface sllalctule and hydrophobicity on attachment to activated sludge flocs[J]. Applical and Environmental Microbiology,1997,63(3):1168-1170. [25] LIAO B Q, ALLEN D G, LEPPARD G G, et al. Interparticle interac-tion affecting the stability of sludge flocs[J].Journal of Colloid and Interface Science, 2002, 249:372-380. [26] DIGNAC M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers:implication on activated sludge floc structure[J]. Water Science and Techology, 1998,38(8/9):45-53.
点击查看大图
计量
- 文章访问数: 91
- HTML全文浏览量: 0
- PDF下载量: 5
- 被引次数: 0