AN OVERVIEW OF COAL-TO-LIQUID TECHNOLOGY AND COMPREHENSIVE UTILIZATION OF COAL-TO-LIQUID RESIDUE
-
摘要: 为了缓解我国高度依赖石油进口带来的风险,发展将煤炭通过科学手段转化为石油的煤制油工艺,是缓解石油和天然气供需矛盾的现实手段。煤制油残渣是煤制油工业的主要污染产物,妥善解决煤制油残渣是实现煤制油工艺绿色发展的重要组成部分。综述了目前国内最普遍的4种煤制油技术并分析其各自优缺点。并对不同煤制油工艺产生的残渣进行分类,对其组成结构和物化性质进行总结,并在此基础上选择煤直接液化残渣,阐述了其利用技术研究进展,主要包括燃烧、热解、制备沥青产物和其他利用途径4个部分。提出煤制油技术的未来发展趋势是研究煤炭的结构转换过程、更加廉价高效的催化剂及其催化原理、催化剂分离的高通量反应器以及产品分离技术。煤制油残渣的高值化利用方式中,沥青类产物和高性能碳材料具有可观的经济前景和研究价值。Abstract: In order to alleviate the risk caused by China's high dependence on oil import, the development of a coal-to-liquid process that converts coal into oil through scientific means is a practical mean. This article reviewed the four most common coal-to-liquid technologies in China, analyzed the advantages and disadvantages of the four coal-to-liquid technologies, and provided a basis for the research of coal-to-liquid technology. The coal-to-liquid residue was the main pollution product of the coal-to-liquid industry. This article also classified the residues produced by different coal-to-liquid processes, summarized their composition and physical and chemical properties, and selected the direct coal liquefaction residue system to explain the current utilization technology of coal direct liquefaction residues. The research progress mainly included four parts:combustion, pyrolysis, preparation of asphalt products and the other. It was suggested that the development trend of coal-to-liquid technology was to study the structure conversion process of coal, cheaper and more efficient catalysts and their catalytic principles, high-throughput reactors for catalyst separation, and product separation technology. Among the high-value utilization methods of coal-to-liquid residue, asphalt products and high-performance carbon materials had good economic prospects and research value.
-
Key words:
- coal-to-liquid technology /
- coal-to-liquid residue /
- utilization
-
[1] 贾众杰,阿格茹.探讨煤制油加氢残渣的综合利用[J].云南化工,2020,47(10):25-26, 29. [2] 张瑞,李峰,石磊,等.煤制油加氢残渣的综合利用研究[J].化学工程师,2015,29(2):33-35. [3] 胡发亭,王学云,毛学锋,等.煤直接液化制油技术研究现状及展望[J].洁净煤技术,2020,26(1):99-109. [4] 秦怡晨.煤制油工艺技术研究[J].山西化工,2020,40(3):37-38, 41. [5] 高阳.煤制油液化化工工艺简述[J].山西化工,2020,40(2):28-30. [6] 李克健,吴秀章,舒歌平.煤直接液化技术在中国的发展[J].洁净煤技术,2014,20(2):39-43. [7] 曹永坤.甲醇制汽油、甲醇制烯烃技术进展及工业应用[J].煤化工,2010,38(4):25-27. [8] 李碧峰.由甲醇制烯烃和汽油的技术进展[J].化工厂设计,1984(1):84-85. [9] BRUCE C F, ANTHONY C S, JOSHUA R S, et al. Process development and demonstration of coal and biomass indirect liquefaction to synthetic iso-paraffinic kerosene[J]. Fuel Processing Technology, 2011, 92(10):1939-1945. [10] 崔普选.煤基甲醇制烯烃工艺技术发展现状[J].现代化工,2020,40(4):5-9. [11] 吴春梅.我国煤基甲醇制烯烃技术进展[J].化工设计通讯,2019,45(2):13, 71. [12] 胡艳. 煤基甲醇制高性能清洁汽油组分研究与应用[D].上海:华东理工大学,2018. [13] 苏航.煤基甲醇制对二甲苯工艺过程的多目标优化和评价研究[D].锦州:渤海大学,2020. [14] 任帅,杨军,郭生飞,等.煤焦油加氢制轻质油品技术进展[J].广州化工,2020,48(14):22-24. [15] 永成.煤焦油加氢制燃料油品[J].化工管理,2019(29):194-195. [16] 崔文岗,李冬,樊安,等.低温煤焦油加氢制备清洁燃料油品中试试验研究[J].化工进展,2018,37(6):2192-2202. [17] 刘世雄.悬浮床煤焦油加氢装置加热炉的技术改造与应用[J].化学工程与装备,2019(12):165-166. [18] 罗万江,兰新哲,宋永辉,等.煤直接液化残渣的利用研究进展[J].材料导报,2013,27(11):153-157. [19] 谷小会.煤直接液化残渣的性质及利用现状[J].洁净煤技术,2012,18(3):63-66. [20] 刘子梁,孙英杰,李卫华,等. 媒间接液化工艺中气化炉渣综合利用进展[J].洁净煤技术,2016,22(1):118-123. [21] 张瑞,李峰,石磊,等.煤制油加氢残渣的综合利用研究[J].化学工程师,2015,29(2):33-35. [22] 贾众杰,阿格茹.探讨煤制油加氢残渣的综合利用[J].云南化工,2020,47(10):25-26, 29. [23] 王宁,刘刚,高宝宝.煤化工技术发展现状及其新型技术研究[J].智能城市,2020,6(11):122-123. [24] 楚希杰,赵丽红,李文,等.神华煤及其直接液化残渣热解动力学试验研究[J].煤炭科学技术,2010,38(5):121-124. [25] 方磊,周俊虎,周志军, 等.煤液化残渣与褐煤混煤燃烧特性的实验研究[J].燃料化学学报,2006,34(2):245-248. [26] 董子平. 煤液化残渣的污染特性和焚烧特征研究[D].长沙:湖南农业大学,2015. [27] 周俊虎,方磊,程军,等.煤液化残渣硫析出动态特性的研究[J].动力工程,2005,25(3):412-415. [28] 许邦,初茉,张慧慧, 等.煤直接液化残渣热解研究现状[J].洁净煤技术,2013,19(4):81-84. [29] 李凯. 低变质煤与神华煤直接液化残渣共热解特性研究[D].西安:西北大学,2019. [30] 李丽丽. 神东煤直接液化残渣与煤共热解相互作用研究[D].山西:太原理工大学,2016. [31] LI K, MA X, HE R, et al. Co-pyrolysis characteristics and interaction route between low-rank coals and Shenhua coal direct liquefaction residue[J]. Chinese Journal of Chemical Engineering, 2019. [32] 位艳宾. 煤液化残渣的组成结构分析和催化加氢[D].徐州:中国矿业大学,2013. [33] 陈茂山,要辉,王洪学,等.煤直接液化残渣制备高附加值产品的探索研究[J].中国煤炭,2020,46(5):74-80. [34] QIN F F, JIANG W, NI G S, et al. From coal-heavy oil co-refining residue to asphaltene-based functional carbon materials[J]. ACS Sustainable Chemistry & Engineering, 2019. [35] 刘国库,胡威威,黄动昊,等.煤直接液化残渣提纯工艺研究[J].河南科技,2020(22):73. [36] 宋真真. 神华煤直接液化残渣的萃取组分及模型化合物改性石油沥青[D].西安:西北大学,2017. [37] 何亮. 煤液化残渣复合改性沥青制备及其性能研究[D]. 西安:长安大学, 2013. [38] 毛海臻. 煤制油渣改性沥青及其混合料技术性能研究与应用[D].郑州:郑州大学,2019. [39] LU H, PENG B Z, GE Z F, et al. The viscosity and crystallization behavior of slag from co-gasification of coal and extraction residue from direct coal liquefaction residue at high temperatures[J]. Fuel, 2021,285:119119. [40] CAO X, PENG B Z, KONG L X, et al. Flow properties of ash and slag under co-gasification of coal and extract residue of direct coal liquefaction residue[J]. Fuel, 2020, 264:116850.1-116850.9. [41] LIU X,ZHOU Z J, HU Q J, et al. Experimental study on Co-gasification of coal liquefaction residue and petroleum coke[J]. Energy & Fuels,2011,25(8):3377-3381. [42] REN L W, WEI R D, ZHU T C. Co-gasification reactivity of petroleum coke with coal and coal liquefaction residue[J]. Journal of the Energy Institute, 2020, 93(1):436-441. [43] WANG Y G, NIU Z S, SHEN J, et al. Extraction of direct coal liquefaction residue using dipropylamine as a CO2-triggered switchable solvent[J]. Fuel Processing Technology,2017,159:27-30.
点击查看大图
计量
- 文章访问数: 280
- HTML全文浏览量: 25
- PDF下载量: 11
- 被引次数: 0