BIODEGRADABLE CHELATE GLDA ENHANCED PHYTOEXTRACTION FOR CADMIUM-CONTAMINATED SOIL
-
摘要: 为探究施加螯合剂谷氨酸N,N-二乙酸(GLDA)对诱导葎草修复镉污染土壤的效果,采取盆栽试验研究了镉污染土壤中施加不同浓度GLDA对葎草生长状况、抗氧化酶系统和镉积累特性以及土壤理化性质的影响。结果表明:当螯合剂GLDA施入50 mg/kg的镉污染土壤后,葎草生物量、根长和茎长比对照组显著减少了13.1%~59.1%、6.6%~26.0%和6.8%~10.6%,而葎草的抗氧化酶系统活性整体呈先升后降的趋势,土壤有效态镉含量相比对照组显著提升了10.4%~53.8%;GLDA在浓度为2.5~3.75 mmol/kg时,葎草对镉均有较好的累积净化效果,相比对照组提高了1.29~1.32倍。总体而言,施加2.5 mmol/kg GLDA效果最为理想,此时葎草生长受影响较小,地下和地上部分镉含量分别为对照组的1.07,1.67倍,转运系数、地下部富集系数和地上部富集系数分别为1.00、1.61和1.60。上述结果表明,施加适宜浓度的GLDA能够有效提升葎草对镉污染土壤的修复效率。
-
关键词:
- 植物修复 /
- 镉污染 /
- 谷氨酸N,N-二乙酸(GLDA) /
- 葎草
Abstract: The chelating agent could enhance the absorption of plants for heavy metal in soil. To explore the effect of chelating agent L-glutamic acid N, N-diacetic acid (GLDA) enhanced phytoextraction for cadmium-contaminated soil, a pot experiment was conducted to investigate the influence on applying GLDA for the growth, antioxidant enzyme activities and cadmium accumulation characteristic of Humulus scandens and soil physical, chemical properties. The results showed that when the chelating agent GLDA was applied to 50 mg/kg cadmium-contaminated soil, the biomass, root length and stem length of Humulus scandens significantly decreased by 13.1%~59.1%, 6.6%~26.0% and 6.8%~10.6%, compared with the control group; the activity of the antioxidant enzyme system of Humulus scandens increased first and then decreased, and the content of available cadmium in soil significantly increased by 10.4%~53.8%, compared with the control group. GLDA also significantly increased the accumulation of cadmium in various parts of Humulus scandens, and the best accumulation effect of Humulus scandens, which was 1.29~1.32 times higher than the control group, was achieved at the GLDA concentration of 2.50~3.75 mmol/kg. In general, the best results were obtained at 2.5 mmol/kg. In this case, the cadmium content of underground and ground part were 1.07 and 1.67 times higher than the control group, respectively. Further, the translocation factor, underground bioconcentration factor and aboveground bioconcentration factor of Humulus scandens were 1.00, 1.61 and 1.60, respectively. The above results indicated that the application of GLDA of the appropriate concentration could improve the remediation efficiency of humulus scandens in cadmium-contaminated soil. -
[1] 李晓宝, 董焕焕, 任丽霞, 等. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 2019, 32(12):1993-2000. [2] 王永奎, 陈苗, 张家泉, 等. 螯合剂辅助植物修复重金属污染土壤技术研究进展[J]. 湖北理工学院学报, 2014, 30(4):30-32,40. [3] 吴青, 崔延瑞, 汤晓晓, 等. 生物可降解螯合剂谷氨酸N, N-二乙酸四钠对污泥中重金属萃取效率的研究[J]. 环境科学, 2015, 36(5):1733-1738. [4] 陈叶享. 更绿色和持续性螯合剂GLDA及其应用之道[J]. 中国洗涤用品工业, 2011(3):65-67. [5] 刘艺芸, 崔爽, 张倩茹, 等. 可降解氨基羧酸型螯合剂在重金属污染土壤修复中的应用研究进展[J]. 山东农业科学, 2015, 47(5):136-140. [6] GUO X F, ZHANG G X, WEI Z B, et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils[J]. Journal of Soils and Sediments, 2017,18(2):835-844. [7] 袁江, 李晔, 许剑臣, 等. 可生物降解螯合剂GLDA和植物激素共同诱导植物修复重金属污染土壤研究[J]. 武汉理工大学学报, 2016, 38(2):82-86,92. [8] 贺玉龙, 余江, 谢世前, 等. 可生物降解螯合剂GLDA强化三叶草修复镉污染土壤[J]. 环境科学, 2020, 41(2):979-985. [9] 卫泽斌, 陈晓红, 吴启堂, 等. 可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究[J]. 环境科学, 2015, 36(5):1864-1869. [10] 王碧霞. NaCl和Cr3+胁迫对葎草幼苗的生长及抗氧化酶活性的影响[J]. 天津农业科学, 2017, 23(9):1-6,15. [11] 魏俊杰, 张妍, 曹柳青, 等. 冀中某铜矿废弃地土壤及优势植物重金属特征评价[J]. 矿产保护与利用, 2017(1):90-97. [12] 王大勇, 吴效中, 张滋芳, 等. 汾河临汾段主要污染源周边土壤重金属来源及抗性植物调查[J]. 山西农业科学, 2015, 43(10):1290-1296. [13] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000, 175-192. [14] 赵朔. 土壤重金属元素分析方法研究[D]. 长春:吉林大学, 2014. [15] ROBINSON B H, MILLS T M, PETIT D, et al. Natural and induced cadmium-accumulation in poplar and willow:implications for phytoremediation[J]. Plant and Soil, 2000, 227(1/2):301-306. [16] 廖爽. 螯合剂EDDS与生长调节剂对牛膝菊(Galinsoga parviflora)富集镉的影响[D]. 雅安:四川农业大学, 2016. [17] 罗艳, 张世熔, 徐小逊, 等. 可降解螯合剂对镉胁迫下籽粒苋根系形态及生理生化特征的影响[J]. 生态学报, 2014, 34(20):5774-5781. [18] 王思予, 多立安, 赵树兰. 可降解螯合剂对草坪植物高羊茅发育及生理的影响[J]. 园艺学报, 2017, 44(11):2186-2194. [19] 陈立, 王丹, 龙婵, 等. 三种螯合剂对芥菜修复铀镉复合污染土壤的影响[J]. 农业环境科学学报, 2018, 37(8):1690-1697. [20] 刘金, 殷宪强, 孙慧敏, 等. EDDS与EDTA强化苎麻修复镉铅污染土壤[J]. 农业环境科学学报, 2015, 34(7):1293-1300. [21] 李妍. 铅镉胁迫对小麦幼苗抗氧化酶活性及丙二醛含量的影响[J]. 麦类作物学报, 2009, 29(3):514-517. [22] XU W H, LI W Y, HE J P, et al. Effects of insoluble Zn, Cd, and EDTA on the growth. activities of antioxidant enzymes and uptake of Zn and Cd in Vetiveria zizanioides[J]. Journal of Environmental Sciences, 2009, 21(2):186-192. [23] 郑爱珍. 镉胁迫对芥蓝根系质膜过氧化及ATPase活性的影响[J]. 生态学报, 2012, 32(2):483-488. [24] 于方明, 漆培艺, 刘可慧, 等. 锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响[J]. 农业环境科学学报, 2019, 38(8):1882-1890. [25] 杨文玲, 巩涛, 刘莹莹, 等. 铅铬胁迫对小麦幼苗抗氧化酶活性和丙二醛含量的影响[J]. 中国农学通报, 2015, 31(6):45-50. [26] ZHANG F Q, WANG Y S, LOU Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007, 67(1):44-50. [27] 高玉梅, 刘帅霞. 植物修复铬污染土壤的研究进展[J]. 广东化工, 2014, 41(5):88-89. [28] 杨丹丹, 杨丽雯, 张永清, 等. 2,6-二甲基-β-环糊精螯合强化葎草对Pb吸收的影响和机理[J]. 环境科学学报, 2016,36(9):3346-3353. [29] 祁由菊, 崔德杰. EDTA辅助下地被石竹对铅污染土壤的修复潜力[J]. 农业环境科学学报, 2008,27(1):165-169. [30] 韩少华, 唐浩, 黄沈发. 重金属污染土壤螯合诱导植物修复研究进展[J]. 环境科学与技术, 2011, 34(增刊1):157-163. [31] ALAN J M BAKER. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS[J]. Chinese Journal of Geochemistry, 2006, 63(S1):1773-1784. [32] SHAHID M, DUMAT C, KHALID S, et al. Reviews of Environmental Contamination and Toxicology, Volume 241[M]. Springer, 2016:73-137.
点击查看大图
计量
- 文章访问数: 113
- HTML全文浏览量: 8
- PDF下载量: 6
- 被引次数: 0