CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔宾曲霉胞外聚合物协同膨润土钝化处理铅污染土壤

张相鲁 刘幽燕 卢宇浩 唐爱星

张相鲁, 刘幽燕, 卢宇浩, 唐爱星. 塔宾曲霉胞外聚合物协同膨润土钝化处理铅污染土壤[J]. 环境工程, 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024
引用本文: 张相鲁, 刘幽燕, 卢宇浩, 唐爱星. 塔宾曲霉胞外聚合物协同膨润土钝化处理铅污染土壤[J]. 环境工程, 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024
ZHANG Xiang-lu, LIU You-yan, LU Yu-hao, TANG Ai-xing. EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024
Citation: ZHANG Xiang-lu, LIU You-yan, LU Yu-hao, TANG Ai-xing. EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 171-177,183. doi: 10.13205/j.hjgc.202105024

塔宾曲霉胞外聚合物协同膨润土钝化处理铅污染土壤

doi: 10.13205/j.hjgc.202105024
基金项目: 

广西自然科学基金(2018GXNSFAA281278)。

详细信息
    作者简介:

    张相鲁(1994-),男,硕士研究生,主要研究方向为重金属污染土壤治理。zxluuu@qq.com

    通讯作者:

    唐爱星(1977-),男,博士,讲师,主要研究方向为环境生物治理和生物催化。aistar2000@hotmail.com

EXTRACELLULAR POLYMERIC SUBSTANCES OF ASPERGILLUS TUBINGENSIS AND BENTONITE PASSIVATION SOIL LEAD

  • 摘要: 钝化修复技术因投入低、见效快、操作简单等特点,对中低浓度土壤污染的修复具有优越性。微生物胞外聚合物(EPS)具有优异的重金属吸附能力,用EPS溶液协同膨润土钝化处理铅污染土壤,考察了EPS用量、酸雨处理、钝化处理时间对钝化效果的影响。结果表明:EPS对铅(Ⅱ)吸附容量为241 mg/g。在钝化实验中随着EPS用量增加,钝化效果先增强后减弱,加入膨润土后能与EPS产生协同钝化效果,最多能增加59%的残渣态铅,酸雨处理和延长处理时间均能增加钝化效果。针对不同污染途径进行的多种评估结果表明,EPS与膨润土能有效降低土壤中可提取态铅的比例。
  • [1] DIXIT R, WASIULLAH, MALAVIYA D, et al. Bioremediation of heavy metals from soil and aquatic environment:an overview of principles and criteria of fundamental processes[J]. Sustainability, 2015, 7(2):2189-2212.
    [2] 曹心德,魏晓欣,代革联,等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7):1441-1453.
    [3] WANG M M, REN L S, WANG D Y, et al. Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods[J]. Journal of Environmental Sciences (China), 2019, 79:91-99.
    [4] CAI M F, MCBRIDE M B, LI K M, et al. Bioaccessibility of As and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter[J]. Chemosphere, 2017, 173:153-159.
    [5] 付煜恒, 张惠灵, 王宇, 等. 磷酸盐对铅镉复合污染土壤的钝化研究[J]. 环境工程, 2017, 35(9):176-180.
    [6] LIU W G, WEI D Z, MI J Y, et al. Immobilization of Cu(Ⅱ) and Zn(Ⅱ) in simulated polluted soil using sulfurizing agent[J]. Chemical Engineering Journal, 2015, 277:312-317.
    [7] MAHAR A, WANG P, LI R H, et al. Immobilization of lead and cadmium in contaminated soil using amendments:a review[J]. Pedosphere, 2015, 25(4):555-568.
    [8] SEVIOUR T, DERLON N, DUEHOLM M S, et al. Extracellular polymeric substances of biofilms:suffering from an identity crisis[J]. Water Research, 2019, 151:1-7.
    [9] MORE T T, YADAV J S S, YAN S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144:1-25.
    [10] WEI L L, LI Y, NOGUERA D R, et al. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges:effect of EPS fractional polarity on binding mechanism[J]. Journal of Hazardous Materials, 2017, 321:473-483.
    [11] SIVAPERUMAL P, KAMALA K, RAJARAM R. Adsorption of cesium ion by marine actinobacterium nocardiopsis sp. 13H and their extracellular polymeric substances (EPS) role in bioremediation[J]. Environmental Science and Pollution Research, 2018, 25(5):4254-4267.
    [12] NKOH J N, XU R K, YAN J, et al. Mechanism of Cu(Ⅱ) and Cd(Ⅱ) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils[J]. Environmental Pollution, 2019, 247:136-145.
    [13] KRANTHI Raj K, USHA R S, ERRAVELLI B, et al. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water:a critical review[J]. Carbohydrate Polymers, 2018, 199:353-364.
    [14] VILLEN G M, PAZ G J M, AMAYA Santos G, et al. Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics[J]. Chemosphere, 2015, 131:78-84.
    [15] GEOGHEGAN M J, BRIAN R C. Aggregate formation in soil:1. influence of some bacterial polysaccharides on the binding of soil particles[J]. Biochemical Journal, 1948, 43:5-13.
    [16] MIKUTTA R, BAUMGÄRTNER A, SCHIPPERS A, et al. Extracellular polymeric substances from Bacillus subtilis associated with minerals modify the extent and rate of heavy metal sorption[J]. Environmental Science & Technology, 2012, 46(7):3866-3873.
    [17] XU Y, LIANG X F, XU Y M, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals:a review[J]. Pedosphere, 2017, 27(2):193-204.
    [18] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30:1749-1758.
    [19] LI W W, YU H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresource Technology, 2014, 160:15-23.
    [20] BRADFORD M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteinedye binding[J]. Analytical Biochemistry, 1976, 76(1/2):248-254.
    [21] GERHARDT P, MURRAY R G E, WOOD W A, et al. Methods for general and molecular bacteriology[M]. Washington, DC:American Society for Microbiology, 1994.
    [22] SKIDMORE W D, DUGGAN E L, GONZALES L J. Determination of the total phosphorus content of deoxyribonucleic acids in the presence of ethylene glycol by a hydrolysis method[J]. Analytical Biochemistry, 1964, 9:370-376.
    [23] GABARRON M, ZORNOZA R, MARTINEZ-Martinez S, et al. Effect of land use and soil properties in the feasibility of two sequential extraction procedures for metals fractionation[J]. Chemosphere, 2019, 218:266-272.
    [24] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1:57-61.
    [25] HU S P, CHEN X C, SHI J Y, et al. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain[J]. Chemosphere, 2008, 71(11):2091-2097.
    [26] JOHN S R, MARGARET E F, MIROSLAV C, et al. Differences in lead bioavailability between a smelting and a mining Area[J]. Water,Air, and Aoil Pollution, 2000, 122(1/2):203-229.
    [27] MEHLICH A. Mehlich 3 soil test extractant:a modification of mehlich 2 extractant[J]. Communications in Soil Science and Plant Analysis, 1984, 15(12):1409-1416.
    [28] LI N J, ZHANG X H, WANG D Q, et al. Contribution characteristics of the in situ extracellular polymeric substances (EPS) in phanerochaete chrysosporium to Pb immobilization[J]. Bioprocess and Biosystems Engineering, 2017, 40(10):1447-1452.
    [29] FANG L C, YANG S S, HUANG Q Y, et al. Biosorption mechanisms of Cu(Ⅱ) by extracellular polymeric substances from bacillus subtilis[J]. Chemical Geology, 2014, 386:143-151.
    [30] KWIATKOWSKA-MALINA J. Functions of organic matter in polluted soils:the effect of organic amendments on phytoavailability of heavy metals[J]. Applied Soil Ecology, 2018, 123:542-545.
    [31] PERELOMOV L, SARKAR B, RAHMAN M M, et al. Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups[J]. Applied Clay Science, 2016, 119:417-423.
    [32] LIN D, MA W T, JIN Z X, et al. Interactions of EPS with soil minerals:a combination study by ITC and CLSM[J]. Colloids and Surfaces B:Biointerfaces, 2016, 138:10-16.
    [33] ASH C, TEJNECKY V, SEBEK O, et al. Redistribution of cadmium and lead fractions in contaminated soil samples due to experimental leaching[J]. Geoderma, 2015, 241:126-135.
    [34] LANDROT G, KHAOKAEW S. Lead speciation and association with organic matter in various particle-size fractions of contaminated soils[J]. Environmental Science & Technology, 2018, 52(12):6780-6788.
    [35] 杨洁,瞿攀,王金生,等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2):217-223.
    [36] LIANG S, GUAN D X, LI J, et al. Effect of aging on bioaccessibility of arsenic and lead in soils[J]. Chemosphere, 2016, 151:94-100.
    [37] BASHIR S, SHAABAN M, HUSSAIN Q, et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil[J]. Journal of Soils and Sediments, 2018, 18(9):2948-2959.
    [38] ABD A A, LEE B T, HAN H J, et al. Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay[J]. Environmental Geochemstry and Health, 2019, 41(1):447-460.
    [39] PLUNKETT S A, WIJAYAWARDENA M A A, NAIDU R, et al. Use of routine soil tests to estimate Pb bioaccessibility[J]. Environmental Science & Technology, 2018, 52(21):12556-12562.
    [40] LIU J H, LI H, WU R P, et al. Effect of weathered coal on the leaching behavior of lead-contaminated soil with simulated acid rain[J]. Water, Air, and Soil Pollution, 2016, 227(10):361.1-361.12.
    [41] CARMELA I, ANTONELLO B, NICOLETTA C, et al. Bioaccessibility of metals in soils:comparison between chemical extractions and in vitro tests[J]. Chemistry and Ecology, 2014, 30(6):541-554.
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回