CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥基生物炭用于土壤中Cr的钝化及作用机制分析

王志朴 热则耶 张大旺 刘丹 赵清英 舒新前

王志朴, 热则耶, 张大旺, 刘丹, 赵清英, 舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
引用本文: 王志朴, 热则耶, 张大旺, 刘丹, 赵清英, 舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
Citation: WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025

污泥基生物炭用于土壤中Cr的钝化及作用机制分析

doi: 10.13205/j.hjgc.202105025
基金项目: 

克拉玛依市科技计划(2020CXRC0013);中国石油大学(北京)克拉玛依校区人才引进项目(XQZX20200014)。

详细信息
    作者简介:

    王志朴(1981-),男,讲师,主要研究方向为土壤污染修复、固废资源化利用。wzpcumt@163.com

    通讯作者:

    舒新前(1963-),男,教授,主要研究方向为工业固废处理技术。sxq@cumtb.edu.cn

EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE

  • 摘要: 污泥基生物炭是广泛用于处理各种环境污染物的添加剂之一。然而,关于污泥基生物炭原位钝化修复Cr污染土壤的研究还较少。以污泥与棉杆为原料,通过共热解制备污泥基生物炭,并按不同比例施加到Cr含量为33.97 mg/kg的土壤中,研究了该生物炭对土壤中Cr吸附固定的效果和机制。当添加比例由1%增加到15%时,土壤中Cr含量由34.02 mg/kg增加到38.52 mg/kg,但各处理土壤Cr浓度均低于GB 15618-2018《土壤环境质量农用地土壤污染风险管控标准(试行)》中Cr的筛选值标准。BCR顺序提取实验结果表明:该生物炭促进土壤中Cr由弱酸可提取态、可还原态向可氧化态、残渣态转化,并降低了Cr的浸出毒性。此外,该生物炭提高了土壤pH、CEC,增加了有机质和有效磷含量,有利于土壤中Cr的固定。污泥基生物炭固定土壤中Cr的机制包括离子交换、沉淀、络合作用等,但污泥基生物炭对土壤中Cr价态的影响需要深入研究。
  • [1] FAN Q Y, SUN J X, QUAN G X, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil:implications for the vertical co-migration of heavy metals[J]. Environment International, 2020, 136(5):105439.
    [2] ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242(5):118435.
    [3] ZEESHAN M, AHMAD W, HUSSAIN F, et al. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield[J]. Journal of Cleaner Production, 2020, 255(10):120318.
    [4] GAO J, ZHAO T K, TSANG D C W, et al. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce[J]. Science of the Total Environment, 2020, 714(3):136721.
    [5] ZHAO M, DAI Y, ZHANG M Y, et al. Mechanisms of Pb and/or Zn adsorption by different biochars:biochar characteristics, stability, and binding energies[J]. Science of the Total Environment, 2020, 717(8):136894.
    [6] XUE C, ZHU L, LEI S C, et al. Lead competition alters the zinc adsorption mechanism on animal-derived biochar[J]. Science of the Total Environment, 2020, 713(5):136395.
    [7] CHENG C, HAN H, WANG Y P, et al. Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil[J]. Science of the Total Environment, 2020, 740(5):139972.
    [8] 汤传武, 刘立恒, 黄蓉, 等. 制备工艺对nZVI/污泥基生物炭中Zn、Cu、Pb形态分布及其生态风险的影响[J]. 环境工程, 2020, 38(10):216-221.
    [9] 许思涵, 王敏艳, 张进, 等. 热解时间对污泥炭特性及其重金属生态风险水平的影响[J]. 环境工程, 2020, 38(3):162-167.
    [10] YANG Y Q, CUI M H, REN Y G, et al. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 38(8):1-8.
    [11] 戴亮, 赵伟繁, 张洪伟, 等. 污泥生物炭对水中重金属去除的研究进展[J]. 环境工程, 2020,38(12):70-77.
    [12] 陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.
    [13] MVLLER-STÖVER D, THOMPSON R, LU C, et al. Increasing plant phosphorus availability in thermally treated sewage sludge by post-process oxidation and particle size management[J]. Waste Management, 2021, 120(10):716-724.
    [14] WANG Z P, SHU X Q, ZHU H N, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments[J]. Environmental Technology, 2020, 41(11):1347-1357.
    [15] TOMCZYK B, SIATECKA A, GAO Y Z, et al. The convertion of sewage sludge to biochar as a sustainable tool of PAHs exposure reduction during agricultural utilization of sewage sludges[J]. Journal of Hazardous Materials, 2020, 392(5):122416.
    [16] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257(2):120562.
    [17] 李喜林, 仝重凯, 刘玲, 等. 粉煤灰合成沸石对铬污染土壤中Cr(Ⅲ)的吸附稳定化效果及机制研究[J]. 安全与环境学报, 2021,21(1):156-168.
    [18] 湛润生, 冯丽肖, 刘海萍, 等. 施硫磺对Pb、Cd、Cr复合污染土壤基本性质与重金属有效性的影响[J]. 山西大同大学学报(自然科学版), 2020, 36(6):82-87.
    [19] 王宇霞, 郝秀珍, 苏玉红, 等不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究[J]. 土壤, 2016, 48(1):123-130.
    [20] 武梦娟, 王桂君, 许振文, 等. 生物炭对沙化土壤理化性质及绿豆幼苗生长的影响[J]. 生物学杂志, 2017, 34(2):63-67.
    [21] YUE Y, CUI L, LIN Q M, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth[J]. Chemosphere, 2017, 173(5):551-556.
    [22] JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229/230:145-150.
    [23] GWENZI W, MUZAVA M, MAPANDA F, et al. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe[J]. Journal of Integrative Agriculture, 2016, 15(6):1395-1406.
    [24] 陈小琴, 康欧, 周健民, 等. 水分与有机酸对水稻土肥际微域磷迁移转化的影响[J]. 土壤, 2013, 45(5):838-844.
    [25] HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22):10346-10351.
    [26] YUE C, WANG Q H, LI Y, et al. Assessment of heavy metal contaminated soils from the lead-zinc mine by toxicity characteristic leaching procedure[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1):109-115.
    [27] 陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1):1-11.
    [28] KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:a review[J]. Waste Management, 2008, 28(1):215-225.
    [29] FENDORF S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67(1):55-71.
  • 加载中
计量
  • 文章访问数:  273
  • HTML全文浏览量:  89
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回