中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥基生物炭用于土壤中Cr的钝化及作用机制分析

王志朴 热则耶 张大旺 刘丹 赵清英 舒新前

王志朴, 热则耶, 张大旺, 刘丹, 赵清英, 舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
引用本文: 王志朴, 热则耶, 张大旺, 刘丹, 赵清英, 舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析[J]. 环境工程, 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
Citation: WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025

污泥基生物炭用于土壤中Cr的钝化及作用机制分析

doi: 10.13205/j.hjgc.202105025
基金项目: 

克拉玛依市科技计划(2020CXRC0013);中国石油大学(北京)克拉玛依校区人才引进项目(XQZX20200014)。

详细信息
    作者简介:

    王志朴(1981-),男,讲师,主要研究方向为土壤污染修复、固废资源化利用。wzpcumt@163.com

    通讯作者:

    舒新前(1963-),男,教授,主要研究方向为工业固废处理技术。sxq@cumtb.edu.cn

EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE

  • 摘要: 污泥基生物炭是广泛用于处理各种环境污染物的添加剂之一。然而,关于污泥基生物炭原位钝化修复Cr污染土壤的研究还较少。以污泥与棉杆为原料,通过共热解制备污泥基生物炭,并按不同比例施加到Cr含量为33.97 mg/kg的土壤中,研究了该生物炭对土壤中Cr吸附固定的效果和机制。当添加比例由1%增加到15%时,土壤中Cr含量由34.02 mg/kg增加到38.52 mg/kg,但各处理土壤Cr浓度均低于GB 15618-2018《土壤环境质量农用地土壤污染风险管控标准(试行)》中Cr的筛选值标准。BCR顺序提取实验结果表明:该生物炭促进土壤中Cr由弱酸可提取态、可还原态向可氧化态、残渣态转化,并降低了Cr的浸出毒性。此外,该生物炭提高了土壤pH、CEC,增加了有机质和有效磷含量,有利于土壤中Cr的固定。污泥基生物炭固定土壤中Cr的机制包括离子交换、沉淀、络合作用等,但污泥基生物炭对土壤中Cr价态的影响需要深入研究。
  • [1] FAN Q Y, SUN J X, QUAN G X, et al. Insights into the effects of long-term biochar loading on water-soluble organic matter in soil:implications for the vertical co-migration of heavy metals[J]. Environment International, 2020, 136(5):105439.
    [2] ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242(5):118435.
    [3] ZEESHAN M, AHMAD W, HUSSAIN F, et al. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield[J]. Journal of Cleaner Production, 2020, 255(10):120318.
    [4] GAO J, ZHAO T K, TSANG D C W, et al. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce[J]. Science of the Total Environment, 2020, 714(3):136721.
    [5] ZHAO M, DAI Y, ZHANG M Y, et al. Mechanisms of Pb and/or Zn adsorption by different biochars:biochar characteristics, stability, and binding energies[J]. Science of the Total Environment, 2020, 717(8):136894.
    [6] XUE C, ZHU L, LEI S C, et al. Lead competition alters the zinc adsorption mechanism on animal-derived biochar[J]. Science of the Total Environment, 2020, 713(5):136395.
    [7] CHENG C, HAN H, WANG Y P, et al. Biochar and metal-immobilizing Serratia liquefaciens CL-1 synergistically reduced metal accumulation in wheat grains in a metal-contaminated soil[J]. Science of the Total Environment, 2020, 740(5):139972.
    [8] 汤传武, 刘立恒, 黄蓉, 等. 制备工艺对nZVI/污泥基生物炭中Zn、Cu、Pb形态分布及其生态风险的影响[J]. 环境工程, 2020, 38(10):216-221.
    [9] 许思涵, 王敏艳, 张进, 等. 热解时间对污泥炭特性及其重金属生态风险水平的影响[J]. 环境工程, 2020, 38(3):162-167.
    [10] YANG Y Q, CUI M H, REN Y G, et al. Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 38(8):1-8.
    [11] 戴亮, 赵伟繁, 张洪伟, 等. 污泥生物炭对水中重金属去除的研究进展[J]. 环境工程, 2020,38(12):70-77.
    [12] 陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.
    [13] MVLLER-STÖVER D, THOMPSON R, LU C, et al. Increasing plant phosphorus availability in thermally treated sewage sludge by post-process oxidation and particle size management[J]. Waste Management, 2021, 120(10):716-724.
    [14] WANG Z P, SHU X Q, ZHU H N, et al. Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments[J]. Environmental Technology, 2020, 41(11):1347-1357.
    [15] TOMCZYK B, SIATECKA A, GAO Y Z, et al. The convertion of sewage sludge to biochar as a sustainable tool of PAHs exposure reduction during agricultural utilization of sewage sludges[J]. Journal of Hazardous Materials, 2020, 392(5):122416.
    [16] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production, 2020, 257(2):120562.
    [17] 李喜林, 仝重凯, 刘玲, 等. 粉煤灰合成沸石对铬污染土壤中Cr(Ⅲ)的吸附稳定化效果及机制研究[J]. 安全与环境学报, 2021,21(1):156-168.
    [18] 湛润生, 冯丽肖, 刘海萍, 等. 施硫磺对Pb、Cd、Cr复合污染土壤基本性质与重金属有效性的影响[J]. 山西大同大学学报(自然科学版), 2020, 36(6):82-87.
    [19] 王宇霞, 郝秀珍, 苏玉红, 等不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究[J]. 土壤, 2016, 48(1):123-130.
    [20] 武梦娟, 王桂君, 许振文, 等. 生物炭对沙化土壤理化性质及绿豆幼苗生长的影响[J]. 生物学杂志, 2017, 34(2):63-67.
    [21] YUE Y, CUI L, LIN Q M, et al. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth[J]. Chemosphere, 2017, 173(5):551-556.
    [22] JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229/230:145-150.
    [23] GWENZI W, MUZAVA M, MAPANDA F, et al. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe[J]. Journal of Integrative Agriculture, 2016, 15(6):1395-1406.
    [24] 陈小琴, 康欧, 周健民, 等. 水分与有机酸对水稻土肥际微域磷迁移转化的影响[J]. 土壤, 2013, 45(5):838-844.
    [25] HUANG H J, YUAN X Z, ZENG G M, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(22):10346-10351.
    [26] YUE C, WANG Q H, LI Y, et al. Assessment of heavy metal contaminated soils from the lead-zinc mine by toxicity characteristic leaching procedure[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1):109-115.
    [27] 陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1):1-11.
    [28] KUMPIENE J, LAGERKVIST A, MAURICE C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:a review[J]. Waste Management, 2008, 28(1):215-225.
    [29] FENDORF S E. Surface reactions of chromium in soils and waters[J]. Geoderma, 1995, 67(1):55-71.
  • 加载中
计量
  • 文章访问数:  275
  • HTML全文浏览量:  89
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 网络出版日期:  2022-01-17

目录

    /

    返回文章
    返回