GROWTH AND PHYSIOLOGICAL INDEXES OF WHEAT SEEDLINGS UNER CADMIUM STRESS ALLEVIATED BY NANO TITANIUM DIOXIDE
-
摘要: 研究了水培环境中不同浓度纳米二氧化钛(TiO2-NPs)(0,25,50,100,200 mg/L)缓解Cd对小麦幼苗造成的生理毒害的作用。结果显示:在水培环境下TiO2-NPs的施用,缓解了Cd对小麦带来的氧化胁迫,减轻了Cd对小麦的毒害作用,显著提高了小麦生物量、根长及株高,改善了小麦光合作用。中浓度(50,100 mg/L)TiO2-NPs的使用显著提高了小麦幼苗净光合速率。对于所有浓度TiO2-NPs的施用,小麦幼苗POD酶活均显著低于Cd处理组;SOD酶活在较低浓度(<200 mg/L)时显著低于Cd处理组。TiO2-NPs通过减轻Cd氧化胁迫作用,有效缓解了Cd对小麦幼苗的毒害,提高了小麦幼苗的光合作用。Abstract: The research mainly studied whether the use of different concentrations of nano-titanium dioxide (TiO2-NPs) (0, 25, 50, 100 and 200 mg/L) in hydroponic environment could alleviate the physiological toxicity of Cd to wheat seedlings. The oxidative stress on wheat caused by Cd was alleviated by TiO2-NPs application in the hydroponic environment. The toxicity of Cd to wheat seedlings was alleviated, the biomass, root length and plant height of wheat were significantly increased, and the photosynthesis of wheat was improved. The net photosynthetic rate of wheat seedlings was increased significantly at medium concentrations (50, 100 mg/L) of TiO2-NPs. For all concentrations of TiO2-NPs, the POD enzyme activity was significantly lower than the Cd treatment group; the SOD enzyme activity was significantly lower than Cd treatment group at lower concentrations (<200 mg/L). Results showed that the use of TiO2-NPs effectively alleviated the toxicity of Cd to wheat seedlings and improved the photosynthesis of wheat seedlings by reducing the oxidative stress caused by Cd.
-
Key words:
- nano titanium dioxide /
- cadmium /
- wheat seedlings /
- physiological response
-
[1] PICCINNO F, GOTTSCHALK F SEEGER S, et al.Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world[J]. Journal of Nanoparticle Research, 2012, 14(9):1109. [2] HEILIGTAG F J, NIEDERBERGER M.The fascinating world of nanoparticle research[J]. Materials Today, 2013, 16(7/8):262-271. [3] BESHA A T, LIU Y, BEKELE D N, et al.Sustainability and environmental ethics for the application of engineered nanoparticles[J]. Environmental Science & Policy, 2020, 103:85-98. [4] 王耀彬,徐德福,廖晨曦.纳米TiO2光催化技术及其在环境污染治理中的应用探讨[J]. 环境与发展, 2019,31(4):111,113. [5] 常红,王京刚.纳米二氧化钛在环保领域中的应用[J].矿冶,2002, 11(4):73-76. [6] 刘珊珊.纳米二氧化钛在重金属废水处理中吸附性能的研究[D].南宁:广西大学,2016. [7] 周雄,张金洋,王定勇,等.纳米TiO2吸附HgCl2水溶液中Hg(Ⅱ)[J]. 环境科学,2016, 37(1):220-227. [8] SHAHRIAR,MAHDAVI.Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from water[J]. Clean Technologies and Environmental Policy, 2016, 18(1):81-94. [9] 许文杰,虢清伟,许振成,等.电沉积处理含镉废水的性能研究[J].环境工程, 2015, 33(1):23-26. [10] ISMAIL A A, EL-MIDANY A A, IBRAHIM I A, et al.Heavy metal removal using SiO2-TiO2 binary oxide:experimental design approach[J]. Adsorption, 2007, 14:21-29. [11] 陈建勋,王晓峰.植物生理学实验指导[M]. 广州:华南理工大学出版社,2006. [12] FRAZIER T P, BURKLEW C E,ZHANG B H. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum)[J]. Functional & Integrative Genomics, 2014, 14(1):75-83. [13] 彭玲,贾芬,田小平,等.硒对油菜根尖镉胁迫的缓解作用[J].环境科学学报,2015,35(8):304-311. [14] 李冬琴,陈桂葵,郑海,等.镉对两品种玉豆生长和抗氧化酶的影响[J].农业环境科学学报,2015, 34(2):221-226. [15] 芦晓磊,宁伟,汤贺,等.光照强度对马齿苋生长及光合特性的影响[J].华北农学报,2008, 23(2):41-44. [16] 郝梦洋.重金属污染土壤的纳米修复技术[J].化工设计通讯, 2017,43(7):82. [17] KELLER A A, MCFERRAN S, LAZAREVA A, et al.Global life cycle releases of engineered nanomaterials[J]. Journal of Nanoparticle Research, 2013, 15:1692. [18] GARDEA-TORRESDEY J L, RICO C M, WHITE J C.Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments[J]. Environmental Science & Technology, 2014, 48(5):2526-2540. [19] 白伟, 张程程, 姜文君,等. 纳米材料的环境行为及其毒理学研究进展[J]. 生态毒理学报, 2009,4(2):24-32. [20] 文双喜,王毅力.水培实验中不同粒径纳米TiO2对金鱼藻种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2018, 13(6):268-277. [21] 兰丽贞,赵群芬,金凯星.环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J].核农学报,2018, 32(2):0389-0398. [22] REJEBA K B, GHNAYAA T, ZAIERA H, et al.Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process[J]. Ecological Engineering, 2013, 60:309-315. [23] 游少鸿,滕云,马丽丽,等.香蒲吸收镉的途径及体内镉化学形态研究[J].环境工程,2016,34(8):58-61. [24] 于珊珊,高正捷,杨月红,等.水体底泥对重金属的吸附机理研究进展[J]. 环境工程,2015,35(增刊1):1018-1020. [25] 张金彪,黄维南.镉对植物的生理生态效应的研究进展[J]. 生态学报, 2000, 20(3):514-523. [26] 孟自力,贾斌,尹海燕,等.镉胁迫对小麦生长发育的影响[J].中国农学通报, 2018, 34(23):26-32. [27] 洪仁远,蒲长光.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75. [28] 王宏镔,王焕校,文传浩,等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002, 22(4):523-528. [29] 涂庆华,李娘辉,李玲,等,纳米化的二氧化钛促进绿豆下胚轴不定根形成[J].植物生理学报,2005, 41(3):313-315. [30] 侯东颖.纳米二氧化钛胁迫对普生轮藻的毒性效应[D]. 太原:山西大学,2012. [31] HONG F S,YANG F,LIU C,et al.Influences of nano-TiO2 on the chloroplast aging of spinach under light[J]. Biological Trace Element Research, 2005, 104(3):249-260. [32] 薛永来,孙先超,张欣,等.纳米二氧化钛通过ROS诱导的氧化损伤途径抑制水稻生长[C]//中国化学会第28届学术年会第2分会场摘要集. 2012. [33] 邓杰,戴林建,苏招红,等.二氧化钛喷施剂对烤烟上部烟叶光合作用和叶绿素荧光参数的影响[J].华南农业大学学报,2018, 39(4):33-38. [34] 张萍,崔海信,张志娟,等.纳米TiO2光半导体溶胶对植物光合机能的影响[J].中国农学通报, 2008, 24(8):230-233. [35] 李博,陶功胜,谢寅峰,等.纳米TiO2对髯毛箬竹光合作用日变化的影响[J].西北林学院学报, 2012,27(1):35-39. [36] 满向甜,林华,林志毅,等.李氏禾耐铜胁迫的积累特征及生理响应[J].环境工程, 2019, 37(9):97-102.
点击查看大图
计量
- 文章访问数: 140
- HTML全文浏览量: 13
- PDF下载量: 5
- 被引次数: 0