HEAVY METAL CONCENTRATION PROPERTIES ANALYSIS AND PRIMARY HEALTH RISK ASSESSMENT IN GROUNDWATER IN THE QINGJIANG RIVER
-
摘要: 为初步明确清江流域地下水重金属的健康风险状况,以清江流域地下水为研究对象,选取研究区流量>50L/s的典型泉、地下暗河供水水源为采样点进行取样,测试分析样品中Pb、As、Mn、Cr、Ni、Fe、Cu、Zn、Cd几类重金属的总含量,结合AHP模型,利用美国环保署(USEPA)的水环境健康风险评价模型,对研究区地下水中重金属对成人与儿童两人群人体健康产生的危害进行评估。结果表明:研究区主要超标重金属元素为As、Pb,各段超标程度顺序为下游>上游>中游,各超标重金属均主要来源于人为输入;化学致癌物As、Cr、Cd为研究区地下水健康风险防控元素,区域综合健康风险顺序为下游>上游>中游,儿童为研究区健康风险主要预防人群。Abstract: In order to preliminarily find out the health risk of heavy metals in groundwater of the Qingjiang River, here the springs (with discharge>50 L/s, and applied as the regional water supply source) in the Qingjiang River were sampled and analyzed for Pb, As, Mn, Cr, Ni, Fe, Cu, Zn and Cd concentration. Health risk for adults and children from these heavy metals was evaluate by a water environmental health risk assessment model of the USEPA and AHP model was also combined. It found that concentration of As and Pb exceeded the national standard limit, and their distribution sequence was downstream>upstream>middle, which mainly originated from human input. As, Cr and Cd were the chemical carcinogens and the reginal health risk prevention elements of groundwater. The health risk assessment result was in the sequence of downstream>upstream>middle. Children were the main concerning group of health risk prevention in the study area.
-
Key words:
- the Qingjiang River /
- groundwater /
- heavy metals /
- health risk assessment
-
[1] LIU Q Q, SHENG Y Q, JIANG M, et al. Attempt of basin-scale sediment quality standard establishment for heavy metals in coastal rivers[J]. Chemosphere,2020,245:125596. [2] COSTA-BODDEKER S, THUYEN L X, HOELZMANN P, et al.Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam):effects of natural and anthropogenic stressors over a thirty-year history[J]. Science of the Total Environment,2020,716:137035. [3] RAJKUMAR H, NAIK P K,RISHI M S. A new indexingapproach for evaluating heavy metal contamination in groundwater[J]. Chemosphere,2020,245:125598. [4] ADIMALLA N, LI P Y, QIAN H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India:a special emphasis on human health risk assessment (HHRA)[J]. Human and Ecological Risk Assessment,2019,25(5):1107-1124. [5] 魏亚强,陈坚,文一,等. 中国地下水污染模拟预测标准体系研究现状[J]. 环境污染与防治,2019,41(11):1387-1392. [6] 孙毅. 清江上游岩溶流域径流特征及洪水预报[D]. 武汉:中国地质大学(武汉),2015. [7] 程凤. 清江高坝洲水库重金属污染及食物网结构研究[D]. 武汉:中南民族大学,2018. [8] ADIMALLA N, LI P Y, Venkatayogi S. Hydrogeochemical Evaluation of Groundwater Quality for Drinking and IrrigationPurposes and Integrated Interpretation with Water Quality Index Studies[J]. Environmental Processes-an International Journal,2018,5(2):363-383. [9] ADIMALLA N, LI P Y. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwaterof the rock-dominant semi-arid region, Telangana State, India[J]. Human and EcologicalRiskIAeeseement,2019,25(1/2):81-103. [10] 张芳,常春平,李静等. 胶东半岛农村地区地下水重金属健康风险评价——以山东省莱阳市为例[J]. 环境科学与技术,2013,36(9):180-186. [11] 饶志,储小东,吴代赦,等. 鄱阳湖平原地下水重金属含量特征与健康风险评估[J]. 水文地质工程地质,2019,46(5):31-37. [12] 杨彦,陆晓松,李定龙. 我国环境健康风险评价研究进展[J]. 环境与健康杂志,2014,31(4):357-363. [13] TAHERI K, THOMAS M, TAHERI M, et al. Critical zone assessments of an alluvial aquifer system using the multi-influencing factor (MIF) and analytical hierarchy process (AHP) models in western Iran[J]. Natural Resources Research,2018,29(2):1163-1191. [14] GNANAVELBABU A, ARUNAGIRI P. Ranking of MUDA using AHP and Fuzzy AHP algorithm[J]. Materialstoday:Proceedings,2018,5(5):13406-13412. [15] 郭森,肖捷颖,张依章,等. 环南四湖区地下水中重金属健康风险评价[J]. 环境工程,2019,37(11):59-64. [16] ADIMALLA N. Groundwater quality for drinking and irrigation purposes and potential health risks assessment:a case study from semi-arid region of south india[J]. Exposure and Health,2019,11(2):109-123. [17] 马振华. 湖北人均GDP破1万美元,平均预期寿命达76.65岁[N]. 武汉晚报,2019-8-17(3). [18] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京:中国环境科学出版社,2013:90-780. [19] 环境保护部. 中国人群暴露参数手册(儿童卷)[M]. 北京:中国环境科学出版社,2016:30-560. [20] AHADA C P S, SUTHAR S. Groundwater nitrate contamination and associated human health risk assessmentin southern districts of Punjab, India[J]. Environmental Scienceand Pollution Research,2018,25(25):25336-25347. [21] CEMEK M, AKKAYA L, BIRDANE Y O, et al. Nitrate and nitrite levels in fruity and natural mineral waters marketed in western Turkey[J]. Journal of Food Composition and Analysis,2007,20(3/4):236-240. [22] 邓雪,李家铭,曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识,2012,42(7):93-100. [23] 任晓霞,张鸣之,韩明伟,等. 咸阳市地下水饮用水源地的水环境评价[J]. 环境工程,2019,37(4):17-21. [24] 刘昭,周宏,曹文佳,等.清江流域地表水重金属季节性分布特征及健康风险评价[J].环境科学,2021,42(1):175-183. [25] 卫生部和国家标准化管理委员会. GB 5749-2006,生活饮用水卫生标准[S].北京,2007. [26] 陈窈君,胡学玉,王向前,等. 湖北省农村小型水源地水体环境中重金属污染状况[J]. 环境科学与技术,2017,40(3):153-160. [27] 况琴,黄庭,向京,等. 鄂西北某农田保护区土壤重金属分布特征及生态风险评价[J]. 环境工程,2019,37(5):45-49,55. [28] 王健康,周怀东,陆瑾,等. 三峡库区水环境中重金属污染研究进展[J]. 中国水利水电科学研究院学报,2014,12(1):49-53. [29] 肖尚斌,刘德富,王雨春,等. 三峡库区香溪河库湾沉积物重金属污染特征[J]. 长江流域资源与环境,2011,20(8):983-989. [30] 张勇,郭纯青,孙平安,等. 基于空间分析荞麦地流域地下水健康风险评价[J]. 中国环境科学,2019,39(11):4762-4768. [31] 鲍丽然,邓海,贾中民,等.重庆秀山西北部农田土壤重金属生态健康风险评价[J/OL].中国地质,1-16[2020-05-22].http://kns.cnki.net/kcms/detail/11.1167.P.20200220.1019.002.html. [32] 吴佳,纪雄辉,朱坚,等. 长株潭地区水环境重金属污染健康风险评价[J]. 湖南农业科学,2018(1):64-68.
点击查看大图
计量
- 文章访问数: 195
- HTML全文浏览量: 33
- PDF下载量: 11
- 被引次数: 0