QRA PROBABILITY MODEL FOR HUMAN HEALTH RISK ASSESSMENT IN SUPERCRITICAL NON-PURE CO2 PIPELINE TRANSPORTATION AREA AND ITS APPLICATION
-
摘要: 研究了超临界非纯CO2热力学参数特征,对非纯CO2泄漏过程中的动态物理参数进行了解析,应用流体数值模拟分析了不同情况下(风速及泄漏孔径)CO2扩散规律。将风速v、距离x、泄漏孔径类型及逻辑函数Lv概率分布特征与数值模拟相关结果应用于QRA定量风险评估模型。结合轻微伤害、不可逆伤害与致死3种危害等级对应浓度阈值4%、10%及25%,对超临界非纯CO2输送管道区域个体3种类型健康风险(HR1、HR2、HR3)进行定量化评估。结果表明:在大孔径泄漏情景下,距离泄漏点200 m范围内个体致死风险,高于可容忍健康风险水平(10-5),200~350 m内个体致死风险高于可接受健康风险水平(10-6),个体轻微伤害风险直至距离1850 m才降低至可接受健康风险水平。研究结果可应用于CCUS超临界输送管道路线和设计早期阶段,为探索减轻人群健康风险替代方案提供定量化数据参考。Abstract: Characteristics of thermodynamic parameters of supercritical CO2, and analysis of dynamic physical parameters during non-pure CO2 leakage, as well as computational fluid dynamics method were conducted to study the diffusion law of CO2 under different conditions. Wind speed v, distance x, leakage aperture type, probability distribution characteristics of logical functions lv and relevant results of numerical simulation were applied to the QRA quantitative risk assessment model. Combined with mild injury, irreversible injury and death, three types of health risks (HR1, HR2 and HR3) in supercritical non-pure CO2 pipeline area were quantitatively evaluated. The results showed that under large aperture leakage scenario, the individual mortality risk within the distance of 200 m from the leakage point was higher than the tolerable level (10-5); and the individual mortality health risk within 200~350 m was higher than the acceptable level (10-6), and the individual slight health risk couldn't be reduced to the acceptable level until a distance of 1850 m from the leakage point. The research results could be applied to the route and early design stage of CCUS supercritical pipeline, and provided quantitative data support for exploring alternatives to reduce population health risk.
-
Key words:
- supercritical CO2 /
- leakage /
- quantification /
- health risk assessment
-
[1] 刘建武.CO2输送管道工程设计的关键问题[J]. 油气储运, 2014, 33(4):369-373. [2] 吴鹏, 史海疆. "再电气化"背景下节能减排路径思考[J]. 电气时代, 2019, 448(1):39-40. [3] 刘冬梅, 陈颖, 李瑶, 等. 中国碳捕集、利用与封存项目环境影响评估技术建议[J]. 环境污染与防治, 2014, 36(4):106-109. [4] 刘敏. 超临界CO2管道输送瞬变特性研究[D].青岛:中国石油大学,2015. [5] JOHN J. Toxicity of CO2:implications for lateral line studies[J]. Journal of Comparative Physiology A Sensory Neural & Behavioral Physiology, 2000, 186(10):957-960. [6] 罗艾民, 陈平, 多英全,等. 定量风险评估(QRA)中的危险辨识方法[J]. 中国安全生产科学技术, 2010, 6(1):54-57. [7] CURTIS M O. Geologic Carbon Sequestration:Sustainability and Environmental Risk[M]. Encyclopedia of Sustainability Science and Technology, 2012, 4119-4133. [8] PRUESS K. Numerical studies of CO2 leakage from geologic storage reservoirs[J]. AGU Fall Meeting Abstracts, 2005. [9] 李晓春. 高浓度二氧化碳对鼠类的影响实验研究[D]. 西安:西北大学, 2015. [10] ELISABETTA A, ENRICA R, PAOLO C. On diffusion, oxidation and condensation phenomena at the liquid metal-gas interface[J]. Materials Chemistry & Physics, 2009, 114(2/3):809-814. [11] 梁俊丽, 孔维华, 费文华,等. 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016,10(6):3125-3129. [12] 薛卫东, 朱正和, 邹乐西,等. 超临界CO2热力学性质的理论计算[J]. 原子与分子物理学报, 2004, 21(2):295-300. [13] BROWN S, BECK J, MAHGEREFTEH H, et al. Global sensitivity analysis of the impact of impurities on CO2 pipeline failure[J]. Reliability Engineering & System Safety, 2013, 115(8):43-54. [14] PENG D Y, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Research, 1976. [15] JOEL H F, MILOVAN P. Computational Methods for Fluid Dynamics[M]. Sprigner, 1999. [16] 贺焕婷.定量风险分析(QRA)在天然气长输管道压气站区域及平面布置中的应用[J]. 管道保护,2020,1:36-41. [17] KIERSMA M E. National Institute for Occupational Safety and Health. In Encyclopedia of Toxicology 466[M]Third Edition. Academic Press:Oxford, 2014:454-455.
点击查看大图
计量
- 文章访问数: 183
- HTML全文浏览量: 32
- PDF下载量: 0
- 被引次数: 0