PHOTO-THERMAL DESALINATION PERFORMANCE OF GRAPHITE OXIDE/POLYVINYL ALCOHOL COMPOSITE ELECTROSPUN FIBROUS MEMBRANE
-
摘要: 采用静电纺丝技术将碳纳米材料氧化石墨原位固定于聚乙烯醇(PVA)纤维,制备了氧化石墨/聚乙烯醇复合电纺纤维膜,并将其作为太阳能光热转换材料用于模拟海水的脱盐处理。结果表明:该复合纤维膜是一种性能优良的光热转换材料,其亲水性极强,在湿态下具有宽光谱吸收范围和较高光吸收率。在纺丝电压为15 kV、极板间距为15 cm、氧化石墨质量分数为3%(相对于聚乙烯醇)条件下制得的复合纤维膜具有最优的光热性能。在1个太阳光(1 kW/m2)照射下,膜表面可快速升温至50℃左右,水蒸发速率可达到1.09 kg/(m2·h),光热转换效率为71.9%,对不同浓度模拟海水的脱盐效率均能达到99.9%以上。此外,该复合纤维膜具有良好的稳定性和重复利用性,可较好地应用于普通海水淡化领域。Abstract: Graphite oxide/polyvinyl alcohol composite electrospun fibrous membrane was prepared by using electrospinning technology, and the carbon nanomaterial graphite oxide could be in situ immobilized in the polyvinyl alcohol fibers. The composite fibrous membrane was used as a solar photo-thermal conversion material for desalination treatment of simulated seawater. The results showed that the composite fibrous membrane was an excellent photo-thermal conversion material. It was extremely hydrophilic, also had a wide spectral absorption range and high photo-absorption rate at wet state. The composite fibrous membranes produced under the conditions of spinning voltage of 15 kV, electrode plate spacing of 15 cm, and graphite oxide mass concentration of 3%(vs. polyvinyl alcohol) had the best photo-thermal conversion properties. Under the irradiation of 1 sunshine unit(1 kW/m2), the surface of membrane could be rapidly heated to about 50℃. The water evaporation rate could reach 1.09 kg/(m2·h), and the photo-thermal conversion efficiency was 71.9%. The composite fibrous membrane could achieve more than 99.9% of desalination efficiency for simulated seawater with different NaCl concentrations. Moreover, the composite fibrous membrane has good stability and reusability, and can be well applied in the field of ordinary seawater desalination.
-
Key words:
- photo-thermal conversion material /
- desalination /
- electrospinning /
- fibrous membrane /
- graphite oxide
-
[1] 阮国岭,冯厚军.国内外海水淡化技术的进展[J].中国给水排水,2008,24(20):86-90. [2] QASIM M,BADRELZAMAN M,DARWISH N N,et al.Reverse osmosis desalination:a state-of-the-art review[J].Desalination,2019,459:59-104. [3] 邱明英.浅析我国海水淡化技术[J].中国环保产业,2018(3):58-60. [4] 黄璐,欧阳自强,刘辉东,等.新型太阳能海水淡化技术研究进展[J].水处理技术,2020,46(4):1-5. [5] FAN P X,WU H,ZHONG M L,et al.Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J].Nanoscale,2016,8(30):14617-14624. [6] FUJIWARA M,IMURA T.Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes[J].ACS Nano,2015,9(6):5705-5712. [7] SEMIAT R.Energy issues in desalination processes[J].Environmental Science & Technology,2008,42(22):8193-8201. [8] SHARON H,REDDY K S.A review of solar energy driven desalination technologies[J].Renewable & Sustainable Energy Reviews,2015,41:1080-1118. [9] 郭星星,高航,殷立峰,等.光热转换材料及其在脱盐领域的应用[J].化学进展,2019,31(4):580-596. [10] 陈宇超,沙畅畅,王心妤,等.基于光热转换的吸收材料与转换机理研究进展[J].能源研究与利用,2019(4):23-31,55. [11] ITO Y,TANABE Y,HAN J H,et al.Multifunctional porous graphene for high-efficiency steam generation by heat localization[J].Advanced Materials,2015,27(29):4302-4307. [12] KAZEMI A S,ABDI Y,ESLAMI J,et al.Support based novel single layer nanoporous graphene membrane for efficacious water desalination[J].Desalination,2019,451:148-159. [13] 赵建玲,马晨雨,李建强,等.基于全光谱太阳光利用的光热转换材料研究进展[J].材料工程,2019,47(6):11-19. [14] ZHANG L,CHEN L L,LIU J,et al.Effect of morphology of carbon nanomaterials on thermo-physical characteristics,optical properties and photo-thermal conversion performance of nanofluids[J].Renewable Energy,2016,99:888-897. [15] GHASEMI H,NI G,MARCONNET A M,et al.Solar steam generation by heat localization[J].Nature Communications,2014,5:DOI: 10.1038/ncomms5449. [16] 王艳芝.静电纺丝技术发展简史及应用[J].合成纤维工业,2018,41(4):52-57. [17] 皮浩弘,张秀芹,王锐,等.液体定向输运电纺纤维材料的研究及进展[J].功能材料,2019,50(2):2076-2085. [18] 李红宾,石文英,杜启云,等.膜蒸馏用静电纺纳米纤维膜的制备及应用进展[J].高校化学工程学报,2019,33(4):786-799. [19] BAE K,KANG G,CHO S K,et al.Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J].Nature Communications,2015,6:DOI: 10.1038/ncomms10103. [20] XU W C,HU X Z,ZHUANG S D,et al.Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J].Advanced Energy Materials,2018,8(14):1702884. [21] YAO S,LI Y,ZHOU Z,et al.Graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology[J].Rsc Advances,2015,5:91878-91887. [22] 徐炜超.Janus吸收体在太阳能海水淡化方面的研究[D].南京:南京大学,2018. [23] 张兴涛,吴广宁,吴旭辉,等.聚酰亚胺薄膜的等离子体改性及其机理探究[J].高压电器,2019,55(9):208-214. [24] 李文涛,柴宝华,王美净,等.不同生活垃圾组分热解炭化特性与热解焦傅里叶红外光谱表征[J].新能源进展,2020,8(1):22-27. [25] JIN Y,CHANG J,SHI Y,et al.A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J].Journal of Materials Chemistry A,2018,6(17):7942-7949. [26] ZHU B,KOU H,LIU Z,et al.Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J].ACS Applied Materials & Interfaces,2019,11(38):35005-35014. [27] FINNERTY C,ZHANG L,SEDLAK D L,et al.Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J].Environmental Science & Technology,2017,51(20):11701-11709. [28] FU Y,WANG G,MEI T,et al.Accessible graphene aerogel for efficiently harvesting solar energy[J].ACS Sustainable Chemistry & Engineering,2017,5(6):4665-4671. [29] YAO J D,ZHENG Z Q,YANG G W.Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation[J].Nanoscale,2018,10(6):2876-2886. [30] JANG G G,KLETT J W,MCFARLANE J,et al.Efficient solar-thermal distillation desalination device by light absorptive carbon composite porous foam[J].Global Challenges,2019,3(8):1900003. [31] LI Y J,GAO T T,YANG Z,et al.Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J].Nano Energy,2017,41:201-209. [32] 苗恩东.碳纳米管复合薄膜的构建及其太阳能蒸发特性研究[D].北京:中国矿业大学(北京),2019. [33] MENG S,ZHAO X,TANG C Y,et al.A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation[J].Journal of Materials Chemistry A,2020,8(5):2701-2711.
点击查看大图
计量
- 文章访问数: 143
- HTML全文浏览量: 19
- PDF下载量: 2
- 被引次数: 0