THE INTERACTIVE MODELING AND JOINT PREVENTION OF WATER POLLUTION BETWEEN SURFACE WATER AND GROUNDWATER IN MAOZHOU RIVER BASIN
-
摘要: 在茅洲河流域地表水与地下水补排关系定性分析的基础上,建立SWAT和SWAT-LUD模型对流域水的循环转化过程进行数值模拟,定量计算地表水与地下水的交互量并估算污染贡献量。结果显示:2017年地下水排泄补给河水水量为1.6×108 m3,携带的NH3-N、TP和COD总量分别为0.9×104,0.2×104,1.7×104 t,约占河流总污染指标的3%;地表水侧向补给地下水水量为1.0×106 m3,携带的NH3-N、TP、COD量分别为11,1.1,510 t,约占地下水补给地表水污染指标总量的2%;洪水泛滥区河水入渗补给地下水水量为6.7×106 m3。基于以上研究,建议采取河道底泥清淤、建设交互带渗透式反应墙、河口建闸、交互带水污染预警与监测等工程措施对茅洲河流域地表水与地下水污染进行联合防治。Abstract: Based on the qualitative analysis of relationship of recharge and discharge between surface water and groundwater in Maozhou River Basin, we established SWAT and SWAT-LUD models to simulate the circulation and transformation process of watershed water, quantified the interactive volume between surface water and ground water, and estimated the pollutant contribution. The results showed that the volume of groundwater recharge to surface water was 1.6×108 m3 in 2017, with the amount of NH3-N、TP and COD at 0.9×104, 0.2×104 and 1.7×104 t, respectively, and approximately contributed 3% of the total river pollutants; the volume of surface water recharge to groundwater was 1.0×106 m3, with the amount of NH3-N, TP and COD at 11 t, 1.1 t and 510 t, respectively, and contributed 2% of the total pollutants of groundwater recharge surface water; the amount of groundwater recharged by river water infiltration in flood area was 6.7×106 m3. On the basis of above research, we suggested to adopt engineering measures, such as sediment dredging, construction of permeable reaction wall in interactive zone, building sluice on river estuary, watershed water environmental early-warning and monitoring in interactive zone, to implement joint prevention of surface water and groundwater pollution in Maozhou River Basin.
-
Key words:
- SWAT model /
- interactive volume distribution /
- Maozhou River Basin /
- surface water /
- groundwater
-
[1] 朱金峰,刘悦忆,章树安,等.地表水与地下水相互作用研究进展[J].中国环境科学,2017,37(8):3002-3010. [2] 凌郡鸿,张依章,王民浩,等.深圳茅洲河下游柱状沉积物中碳氮同位素特征[J].环境科学,2017,38(12):5081-5089. [3] 王磊,刘亭亭,谢建治.基于SWAT模型的张家口清水河流域土地利用情景变化对径流影响研究[J].水土保持研究,2019,26(4):245-251. [4] CHANG C,SUN D M,FENG P,et al.Impacts of nonpoint source pollution on water quality in the Yuqiao Reservoir[J].Environmental Engineering Science,2017,34(6):418-432. [5] SUN X L,BERNARD-JANNIN L,GRUSSON Y,et al.Using SWAT-LUD model to estimate the influence of water exchange and shallow aquifer denitrification on water and nitrate flux[J].Water,2018,10(4):528. [6] 许自舟,周旭东,隋伟娜,等.基于SWAT模型的碧流河流域入海径流模拟研究[J].海洋环境科学,2020,39(2):216-222. [7] 董立俊,董晓华,曾强,等.气候变化条件下雅砻江流域未来径流变化趋势研究[J].气候变化研究进展,2019,15(6):596-606. [8] 付潇然,王东,栾清华,等.大尺度无管流数据城区SWMM构建及模拟-Ⅱ.模型参数校验及暴雨径流模拟分析[J].水科学进展,2020,31(1):51-60. [9] 王胜,许红梅,高超,等.基于SWAT模型分析淮河流域中上游水量平衡要素对气候变化的响应[J].气候变化研究进展,2015,11(6):402-411. [10] 李星,徐学选,宇苗子,等.SWAT模型在黄土丘陵区燕沟流域的应用研究[J].水土保持通报,2012,32(3):141-144. 期刊类型引用(11)
1. 何宽畅,冯诗洋,杨文剑,杨奎,尹征,何燕生,马金星. 基于合成电化学技术的水中污染物增值转化研究进展. 能源环境保护. 2025(01): 34-47 . 百度学术
2. 赵霞,石诗义,毛杨,武桢寓. 城市污水处理厂的“水-能-碳”协调调度模型. 电网技术. 2024(05): 1918-1928 . 百度学术
3. 涂倩倩,沈鹏飞,刘鸣燕,张梓璇,余波,杨凯. 城镇污水处理厂碳排放核算方法及特征. 净水技术. 2024(06): 52-62 . 百度学术
4. 于翔,潘兴朋,王永乐. 浅析化工污水处理装置的改进创新措施和社会效益. 中国轮胎资源综合利用. 2024(12): 67-69 . 百度学术
5. 李哲坤,张立秋,杜子文,封莉,刘永泽. 城市污泥不同处理处置工艺路线碳排放比较. 环境科学. 2023(02): 1181-1190 . 百度学术
6. 任南琪,王旭. 城市水系统发展历程分析与趋势展望. 中国水利. 2023(07): 1-5 . 百度学术
7. 纪义虎,左其亭,马军霞. 基于Tapio和LMDI模型的沁河流域碳排放与水资源利用脱钩关系分析. 水资源保护. 2023(04): 94-101 . 百度学术
8. 谢琤琤,刘刚. 城市污水处理厂碳中和路径解析. 环境工程. 2023(09): 181-186 . 本站查看
9. 蒲贵兵,王鹏,卫然. 基于城市生活污水系统全生命周期的直接碳减排路径研究. 环境科学与管理. 2023(10): 11-16 . 百度学术
10. 张海亚,李思琦,黎明月,段亮,张洪伟,秦伟,赵立伟,刘鹏,吕云龙,王玉龙. 城镇污水处理厂碳排放现状及减污降碳协同增效路径探讨. 环境工程技术学报. 2023(06): 2053-2062 . 百度学术
11. 李天昕,翁锐,徐新朋,程世昆,杨朕,李勇,李子富. 基于还田视角的人粪尿处理研究进展. 农业资源与环境学报. 2023(06): 1388-1399 . 百度学术
其他类型引用(2)
-

计量
- 文章访问数: 241
- HTML全文浏览量: 43
- PDF下载量: 8
- 被引次数: 13