OPTIMIZATION OF PARAMETERS IN ADVANCED TREATMENT OF LIVESTOCK WASTEWATER BY ALGAL-BACTERIA IMMOBILIZATION
-
摘要: 以模拟废水为研究对象,基于藻菌包埋固定化在畜禽养殖废水处理中的处理效果和微生物生长情况,来优化藻菌固定化小球的制备条件和试验参数。以固定化小球强度、微生物生长情况、污染物去除效果为考察指标,通过正交试验,采用多指标全概率分析法和SPSS软件分析,确定藻菌固定化的优选参数组合:海藻酸钠(SA)、氯化钙(CaCl2)浓度及固定化时间。然后,运用Design-Expert 10软件设计响应曲面实验,对相关实验参数做进一步优化。实验结果表明:正交实验得到的一组优选参数为SA浓度3%、CaCl2浓度1%、固定化时间12 h;最终通过响应曲面法进一步优化得到最优参数为SA浓度4%、CaCl2浓度0.5%、固定化时间6 h,在此最优参数条件下固定化小球强度、微藻生长速率、TN去除率分别达到-13.58%、 0.193、 89.55%。Abstract: Artificial wastewater was used in this study, and parameters of the algae-bacteria immobilized pellets and the growth of microorganism were optimized based on treatment efficiency of livestock wastewater. The orthogonal experiment was designed for optimization of immobilized pellet strength, the growth of microorganism and removal efficiency, using multi-index full probability analysis and SPSS software analysis. The results were concluded as a set of parameters including the concentration of sodium alginate(SA) and calcium chloride(CaCl2) and the immobilization time. Then, the response surface experiment designed by analysis software Design-Expert 10 were carried out to further optimize these parameters. The results showed that the optimized parameters of orthogonal experiment were SA concentration of 3%, the CaCl2 concentration of 1%, and the immobilization time of 12 hours; finally, the optimal parameters obtained by response surface methodology were:SA concentration of 4%, CaCl2 concentration of 0.5%, and immobilization time of 6 hours; under the optimal condition, the immobilized pellets strength, microalgae growth rate, TN removal rate reached-13.58%, 0.193 and 89.55%, respectively.
-
[1] 姜素华.畜禽养殖废水处理技术探讨[J].资源节约与环保,2018(4):79. [2] 唐凯.国内畜禽养殖废水处理技术的研究进展[J].应用化工,2018,47(10):2274-2278. [3] 臧一天,万红伟,邴珊,等.畜禽养殖污水常用处理技术[J].江西畜牧兽医杂志,2018(3):29-31. [4] LIU K,LI J,QIAO H J,et al.Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater[J].Bioresource Technology,2012,114:26-32. [5] KUMAR A,ERGAS S,YUAN X,et al.Enhanced CO2 fixation and biofuel production via microalgae:recent developments and future directions[J].Trends Biotechnology,2010,28(7):371-380. [6] TAM N F Y,WONG Y S.Effect of immobilized microalgal bead concentrations on wastewater nutrient removal[J].Environmental Pollution,2000,107:145-151. [7] LAM M K,LEE K T.Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production[J].Chemical Engineering Journal,2012,191:263-268. [8] 郝倩.包埋固定化脱氮菌群用于处理高氨氮废水的研究[D].北京:清华大学,2014. [9] ZENG Z T,TANG B,XIAO R,et al.Quorum quenching bacteria encapsulated in PAC-PVA beads for enhanced membrane antifouling properties[J].Enzyme and Microbial Technology,2018,117:72-78. [10] MORENO G I.Microalgae immobilization:current techniques and uses[J].Bioresource Technology,2008,99:3949-3964. [11] 杨慧.添加吸附剂对包埋固定化微生物凝胶小球性能的影响研究[D].兰州:兰州交通大学,2007. [12] ZHANG Y,HUI B,YE,L.Reactive toughening of polyvinyl alcohol hydrogel and its wastewater treatment performance by immobilization of microorganisms[J].RSC Advances,2015,5:91414-91422. [13] MUJTABA G,LEE K.Treatment of real wastewater using co-culture of immobilized chlorella vulgaris and suspended activated sludge[J].Water Research,2017,120:174-184. [14] DE-BASHAN L E,HERNANDEZ J P,MOREY T,et al.Microalgae growth-promoting bacteria as"Helpers"for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater[J].Water Research,2004,38:466-474. [15] 高鹏.固定化铜绿微囊藻及其对畜禽废水的净化研究[D].成都:四川农业大学,2011. [16] SHEN Y,GAO J Q,LI L S.Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis:Microorganism growth and nutrients removal[J].Bioresource Technology,2017,243:905-913. [17] XIE B H,GONG W J,YU H R,et al.Immobilized microalgae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system:algal harvest and membrane fouling control[J].Bioresource Technology,2018,268:139-148. [18] MUJTABA G,RIWZAN M,LEE K.Removal of nutrients and cod from wastewater using symbiotic co-culture of bacterium pseudomonas putida and immobilized microalga Chlorella vulgaris[J].Journal of Industrial and Engineering Chemistry,2017,49:145-151. [19] 国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2003:701-731. [20] 倪永兴,彭图婉,曾诠.多指标试验全概率公式评分法研究槐米炭炮制工艺[J].中国药科大学学报,1995(6):359-361. [21] 杨海波,于媛,张欣华,等.小球藻固定化培养的初步研究[J].水产科学,2001,20(5):4-7. [22] 蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-16. [23] REHMAN H U,AMAN A,SILIPO A,et al.Degradation of complex carbohydrate:immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support[J].Food Chemistry,2013,139(1/2/3/4):1081-1086. [24] 王建龙.固定化对微生物生理变化的影响[J].中国生物工程杂志,2003,23(7):62-66. [25] JIANG Y Q,WANG H,ZHAO C F,et al.Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation[J].Bioresource Technology,2018,268:300-307. [26] LIYANA P C,SHAHIDI F.Optimization of extraction of phenolic compounds from wheat using response surface methodology[J].Food Chemistry,2005,93:47-56.
点击查看大图
计量
- 文章访问数: 137
- HTML全文浏览量: 23
- PDF下载量: 9
- 被引次数: 0