THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE
-
摘要: 装修等产生的室内甲醛严重影响人体健康,因此在室温下降解甲醛的需求日益迫切。目前,常温催化氧化法被视为最有前景的甲醛处理方法之一。沸石分子筛具有较大比表面积及较多吸附位点,以此为载体,以MnOx和CeOx为反应活性位点,通过共沉淀法成功合成了Mn1Cex/HZSM-5催化剂。该催化剂在常温下可降解96.86%的甲醛且具有良好的稳定性。此外,通过一系列的物理化学表征分析发现,Ce物种不仅能够显著提高催化剂中高价态锰的含量,还能带来更多的表面吸附羟基和吸附氧,进而提升催化剂的性能。鉴于其优异及稳定的性能、简便的合成方法,此高效除甲醛Mn1Cex/HZSM-5催化剂可为室温下除甲醛催化剂的合成提供新的参考。Abstract: Formaldehyde caused by indoor decoration has serious impact on human health, the need to reduce formaldehyde at room temperature is increasingly urgent. At present, room temperature catalytic oxidation is regarded as one of the most promising formaldehyde treatment methods. Zeolite molecular sieve has a large specific surface area and more adsorption sites. In this paper, with zeolite molecular sieve as the carrier, and MnOx and CeOx as reaction active sites, Mn1Cex/HZSM-5 catalyst was successfully synthesized through co-precipitation method. The catalyst degraded 96.86% of formaldehyde at room temperature and had good working stability. In addition, through a series of physical and chemical characterization analysis, it was found that Ce species could not only significantly improve the content of high-valent manganese in the catalyst, but also bring more surface hydroxyl and oxygen adsorption, thus improving the performance of the catalyst. In view of its excellent and stable performance and simple synthesis method, this highly efficient formaldehyde removal catalyst, Mn1Cex/HZSM-5 could provide a novel reference for the synthesis of formaldehyde removal catalyst at room temperature.
-
Key words:
- molecular sieve /
- catalytic oxidation /
- bimetal catalyst /
- indoor air pollution
-
[1] 中国测试技术研究院化学所,四川省弗里曼环境科技有限公司.2019中国室内空气污染状况白皮书[M].2019. [2] 刘学,刘付建.家居环境中甲醛的毒性及其控制[J].环境与发展,2017(4):64-65. [3] 陈丹,李汶菁,肖瑜,等.羟基改性Ag/MCM-41催化剂上甲醛的催化氧化性能[J].环境工程,2019,37(5):155-159. [4] 住房和城乡建设部.民用建筑工程室内环境污染控制标准:GB 50325-2020[S].2020. [5] 李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20. [6] LI L C,LI L,WANG L,et al.Enhanced catalytic decomposition of formaldehyde in low temperature and dry environment over silicate-decorated titania supported sodium-stabilized platinum catalyst[J].Applied Catalysis B:Environmental,2020,277:191296-191305. [7] LIU X S,LU J Q,QIAN K,et al.A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts[J].Journal of Rare Earths,2009,27(3):418-424. [8] LIU G,YUE R L,JIA Y,et al.Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J].Particuology,2013,11(4):454-459. [9] ZHANG Y,CHEN M X,ZHANG Z X,et al.Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature:promotional effect of relative humidity on the MnCeOx solid solution[J].Catalysis Today,2019,327:323-333. [10] 曹利,连子,黄学敏.MnCeOx/沸石催化剂对工业典型VOCs的催化性能[J].环境工程,2020,38(1):48-53. [11] 章凌.沸石分子筛负载Pt催化剂室温催化氧化甲醛[D].杭州:浙江大学,2017. [12] HU P D,NAKAMURA K,MATSUBARA H,et al.Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites[J].Applied Catalysis A:General,2020,601:117661-117668. [13] ZHANG X,SU L F,KONG Y L,et al.CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity[J].Journal of Physics and Chemistry of Solids,2020,147:109651-109660. [14] HONG W J,IWAMOTO S,HOSOKAWA S,et al.Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition[J].Journal of Catalysis,2011,277(2):208-216. [15] HE C,YU Y K,CHEN C W,et al.Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J].RSC Advances,2013,3(42):19639-19656. [16] WANG Y,DENG W,WANG Y F,et al.A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J].Molecular Catalysis,2018,459:61-70. [17] JIANG L J,LIU Q C,RAN G J,et al.V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J].Chemical Engineering Journal,2019,370:810-821. [18] HUSSAIN S T,SAYARI A,LARACHI F.Enhancing the stability of Mn-Ce-O WETOX catalysts using potassium[J].Applied Catalysis B:Environmental,2001,34:1-9. [19] WANG T,CHEN S,WANG H Q,et al.In-plasma catalytic degradation of toluene over different MnO2 polymorphs study of reaction mechanism[J].Chinese Journal of Catalysis,2017,38(5):793-804. [20] CHEN X B,WANG H Q,GAO S,et al.Effect of pH value on the microstructure and deNOx catalytic performance of titanate nanotubes loaded CeO2[J].Journal of Colloid and Interface Science,2012,377(1):131-136. [21] ZHANG C B,LIU F D,ZHAI Y P,et al.Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J].Angewandte Chemie International Edition,2012,51(38):9628-9632. [22] SHU Y J,HE M,JI J,et al.Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5[J].Journal of Hazardous Materials,2019,364:770-779. [23] MARTIN S,ULRICH A,PHILIPP S,et al.Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101)[J].Science,2013,341:988-991. [24] TANG X F,LI Y G,HUANG X M,et al.MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:effect of preparation method and calcination temperature[J].Applied Catalysis B:Environmental,2006,62(3/4):265-273. [25] WEN Y R,TANG X,LI J H,et al.Impact of synthesis method on catalytic performance of MnOx-SnO2 for controlling formaldehyde emission[J].Catalysis Communications,2009,10(8):1157-1160. [26] JIN Q J,SHEN Y S,ZHU S M,et al.Effect of praseodymium additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J].Journal of Rare Earths,2016,34(11):1111-1120.
点击查看大图
计量
- 文章访问数: 178
- HTML全文浏览量: 17
- PDF下载量: 4
- 被引次数: 0