中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常温除甲醛催化剂Mn1Cex/HZSM-5的活性位点与性能分析

樊灏 沈振兴 逯佳琪 常甜 黄宇

樊灏, 沈振兴, 逯佳琪, 常甜, 黄宇. 常温除甲醛催化剂Mn1Cex/HZSM-5的活性位点与性能分析[J]. 环境工程, 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015
引用本文: 樊灏, 沈振兴, 逯佳琪, 常甜, 黄宇. 常温除甲醛催化剂Mn1Cex/HZSM-5的活性位点与性能分析[J]. 环境工程, 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015
FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015
Citation: FAN Hao, SHEN Zhen-xing, LU Jia-qi, CHANG Tian, HUANG Yu. THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 99-105. doi: 10.13205/j.hjgc.202106015

常温除甲醛催化剂Mn1Cex/HZSM-5的活性位点与性能分析

doi: 10.13205/j.hjgc.202106015
基金项目: 

国家自然科学基金项目(51878644)

详细信息
    作者简介:

    樊灏(1993-),女,博士,主要研究方向为大气污染控制。amber3437@163.com

    通讯作者:

    沈振兴(1973-),男,博士,教授,主要研究方向为大气污染物特征及控制。zxshen@mail.xjtu.edu.cn

THE ACTIVE SITES AND PERFORMANCE OF Mn1Cex/HZSM-5 CATALYST FOR FORMALDEHYDE REMOVAL AT ROOM TEMPERATURE

  • 摘要: 装修等产生的室内甲醛严重影响人体健康,因此在室温下降解甲醛的需求日益迫切。目前,常温催化氧化法被视为最有前景的甲醛处理方法之一。沸石分子筛具有较大比表面积及较多吸附位点,以此为载体,以MnOx和CeOx为反应活性位点,通过共沉淀法成功合成了Mn1Cex/HZSM-5催化剂。该催化剂在常温下可降解96.86%的甲醛且具有良好的稳定性。此外,通过一系列的物理化学表征分析发现,Ce物种不仅能够显著提高催化剂中高价态锰的含量,还能带来更多的表面吸附羟基和吸附氧,进而提升催化剂的性能。鉴于其优异及稳定的性能、简便的合成方法,此高效除甲醛Mn1Cex/HZSM-5催化剂可为室温下除甲醛催化剂的合成提供新的参考。
  • [1] 中国测试技术研究院化学所,四川省弗里曼环境科技有限公司.2019中国室内空气污染状况白皮书[M].2019.
    [2] 刘学,刘付建.家居环境中甲醛的毒性及其控制[J].环境与发展,2017(4):64-65.
    [3] 陈丹,李汶菁,肖瑜,等.羟基改性Ag/MCM-41催化剂上甲醛的催化氧化性能[J].环境工程,2019,37(5):155-159.
    [4] 住房和城乡建设部.民用建筑工程室内环境污染控制标准:GB 50325-2020[S].2020.
    [5] 李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程,2020,38(1):13-20.
    [6] LI L C,LI L,WANG L,et al.Enhanced catalytic decomposition of formaldehyde in low temperature and dry environment over silicate-decorated titania supported sodium-stabilized platinum catalyst[J].Applied Catalysis B:Environmental,2020,277:191296-191305.
    [7] LIU X S,LU J Q,QIAN K,et al.A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-CeO2 catalysts[J].Journal of Rare Earths,2009,27(3):418-424.
    [8] LIU G,YUE R L,JIA Y,et al.Catalytic oxidation of benzene over Ce-Mn oxides synthesized by flame spray pyrolysis[J].Particuology,2013,11(4):454-459.
    [9] ZHANG Y,CHEN M X,ZHANG Z X,et al.Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature:promotional effect of relative humidity on the MnCeOx solid solution[J].Catalysis Today,2019,327:323-333.
    [10] 曹利,连子,黄学敏.MnCeOx/沸石催化剂对工业典型VOCs的催化性能[J].环境工程,2020,38(1):48-53.
    [11] 章凌.沸石分子筛负载Pt催化剂室温催化氧化甲醛[D].杭州:浙江大学,2017.
    [12] HU P D,NAKAMURA K,MATSUBARA H,et al.Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites[J].Applied Catalysis A:General,2020,601:117661-117668.
    [13] ZHANG X,SU L F,KONG Y L,et al.CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity[J].Journal of Physics and Chemistry of Solids,2020,147:109651-109660.
    [14] HONG W J,IWAMOTO S,HOSOKAWA S,et al.Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy catalysts for direct NO decomposition[J].Journal of Catalysis,2011,277(2):208-216.
    [15] HE C,YU Y K,CHEN C W,et al.Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J].RSC Advances,2013,3(42):19639-19656.
    [16] WANG Y,DENG W,WANG Y F,et al.A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J].Molecular Catalysis,2018,459:61-70.
    [17] JIANG L J,LIU Q C,RAN G J,et al.V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J].Chemical Engineering Journal,2019,370:810-821.
    [18] HUSSAIN S T,SAYARI A,LARACHI F.Enhancing the stability of Mn-Ce-O WETOX catalysts using potassium[J].Applied Catalysis B:Environmental,2001,34:1-9.
    [19] WANG T,CHEN S,WANG H Q,et al.In-plasma catalytic degradation of toluene over different MnO2 polymorphs study of reaction mechanism[J].Chinese Journal of Catalysis,2017,38(5):793-804.
    [20] CHEN X B,WANG H Q,GAO S,et al.Effect of pH value on the microstructure and deNOx catalytic performance of titanate nanotubes loaded CeO2[J].Journal of Colloid and Interface Science,2012,377(1):131-136.
    [21] ZHANG C B,LIU F D,ZHAI Y P,et al.Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J].Angewandte Chemie International Edition,2012,51(38):9628-9632.
    [22] SHU Y J,HE M,JI J,et al.Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5[J].Journal of Hazardous Materials,2019,364:770-779.
    [23] MARTIN S,ULRICH A,PHILIPP S,et al.Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101)[J].Science,2013,341:988-991.
    [24] TANG X F,LI Y G,HUANG X M,et al.MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:effect of preparation method and calcination temperature[J].Applied Catalysis B:Environmental,2006,62(3/4):265-273.
    [25] WEN Y R,TANG X,LI J H,et al.Impact of synthesis method on catalytic performance of MnOx-SnO2 for controlling formaldehyde emission[J].Catalysis Communications,2009,10(8):1157-1160.
    [26] JIN Q J,SHEN Y S,ZHU S M,et al.Effect of praseodymium additive on CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J].Journal of Rare Earths,2016,34(11):1111-1120.
  • 加载中
计量
  • 文章访问数:  127
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回