WASTE PVC-ASSISTED CHLORINATION ROASTING FOR EFFICIENT RECOVERY OF CATHODE MATERIALS FROM WASTE LITHIUM-ION BATTERIES
-
摘要: 采用废弃PVC作为氯化剂,通过氯化焙烧与低温水浸复合,有效提高了废弃锂离子电池正极材料LiCoO2中钴和锂的浸出效率。系统研究了焙烧温度、氯化剂与正极材料LiCoO2物料比、焙烧时间等参数对钴和锂浸出率的影响规律和作用机制。研究结果表明:在焙烧温度500℃、物料比5∶1、焙烧时间120 min条件下,再经60℃水浸后,钴的浸出率达到95%以上,锂的浸出率高达99%。同时采用X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征焙烧前后材料的晶体结构和表面形貌以及元素化合价变化,阐明了氯化焙烧LiCoO2过程中钴和锂的物相间转化机制与动力学机理。与传统的湿法、火法和生物冶金相比,该废旧锂离子电池正极材料回收技术拥有更低的能源强度和更好的工业应用前景。Abstract: Using waste PVC as a chlorinating agent, through chlorination roasting and low-temperature water leaching compound, we effectively improved the leaching efficiency of cobalt and lithium in the anode material LiCoO2 of the waste lithium-ion battery. The effects of calcination temperature, chlorinating agent and cathode material LiCoO2 material ratio, calcination time and other parameters on the leaching rate of cobalt and lithium were systematically studied. The research results showed that under the conditions of calcination temperature of 500℃, material ratio of 5:1, and calcination time of 120 min, the leaching rate of metallic cobalt reached more 95% above and the leaching rate of metallic lithium reached 99% after being immersed in water at 60℃. At the same time, X-ray diffraction(XRD), scanning electron microscope(SEM), and X-ray photoelectron spectroscopy(XPS) were used to characterize the crystal structure and surface morphology of the material before and after calcination, as well as the changes in element valence, and in-depth elucidate the process of chlorination calcination of LiCoO2, and conversion mechanism and kinetic mechanism of cobalt and lithium. Compared with the traditional wet method, fire method and biometallurgy technology, this recycling technology has lower energy intensity and higher industrial application prospects.
-
[1] 黄云辉.钴酸锂正极材料与锂离子电池的发展:2019年诺贝尔化学奖解读[J].电化学,2019,25(5):609-613. [2] 陈立泉.锂离子电池改变世界:2019年诺贝尔化学奖成果简析[J].科技导报,2019,37(24):36-40. [3] XIAO J F,LI J,XU Z M.Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives[J].Environmental ence & Technology,2020,54(1):9-25. [4] 罗宁川,莫子璇.2019年我国锂行业市场情况[J].中国金属通报,2019(11):1-3. [5] 王京,石香江,王寿成,等.未来中国钴资源需求预测[J].中国国土资源经济,2019,32(10):28-33. [6] 范二莎,李丽,等.低温熔融盐辅助高效回收废旧三元正极材料[J].储能科学与技术,2020,9(2):361-367. [7] 高桂兰.有机酸还原性体系浸出回收废弃锂离子电池正极材料的研究[D].上海:上海大学,2019. [8] 任浩华,王帅,王芳杰,等.PVC热解过程中HCl的生成及其影响因素[J].中国环境科学,2015,35(8):2460-2469. [9] FAN E S,LI L,LIN J,et al.Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J].ACS Sustainable Chemistry & Engineering,2019,7(19):16144-16150. [10] 潘贵英,黄金保,程小彩,等.聚氯乙烯热降解机理的理论研究[J].分子科学学报,2019,35(1):29-39. [11] 师奇松,陈喆.聚氯乙烯的热解特性和热解动力学的研究[J].北京石油化工学院学报,2009,17(1):1-4. [12] 韩斌.聚氯乙烯等塑料废弃物热解特性及动力学研究[D].天津:天津大学,2012. [13] 马师白,鲁军,高晋生.含氯有机废料资源化处理基础研究Ⅰ.PVC固定床热解脱氯反应特性[J].华东理工大学学报,2002,28(1):59-62. [14] SAEKI S,LEE J,ZHANG Q W,et al.Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product[J].International Journal of Mineral Processing,2004,74:S373-S378. [15] ZHENG Z F,CHEN M Y,WANG Q,et al.High performance cathode recovery from different electric vehicle recycling streams[J].ACS Sustainable Chemistry & Engineering,2018,6(11):13977-13982. [16] HE L P,SUN S Y,YU J G.Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J].Ceramics International,2018,44(1):351-357. [17] SA Q N,HEELAN J A,LU Y,et al.Copper impurity effects on LiNi1/3Co1/3Mn1/3O2 cathode material[J].ACS Applied Materials & Interfaces,2015,7(37):20585-20590. [18] 郭丽萍,黄志良,方伟,等.化学沉淀法回收LiCoO2中的Co和Li[J].电池,2005,35(4):266-267. [19] 胡传跃,郭军,汪形艳,等.从废旧锂离子电池中回收钴和铝的工艺[J].电池,2006,36(6):481-482. [20] 谭海翔,胡启阳,李新海,等.钴酸锂废极片中钴回收新工艺研究[J].电源技术,2007,131(4):288-290. [21] 申勇峰.从废锂离子电池中回收钴[J].有色金属,2002,54(4):69-70. [22] 何汉兵,秦毅红.从废旧锂离子蓄电池中回收钴[J].电源技术,2006,30(4):311-314.
点击查看大图
计量
- 文章访问数: 161
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0