中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压膜表面性质对膜污染的影响机制

刘彦伶 李天玉 王小 解跃峰 黄霞

刘彦伶, 李天玉, 王小, 解跃峰, 黄霞. 高压膜表面性质对膜污染的影响机制[J]. 环境工程, 2021, 39(7): 46-53,45. doi: 10.13205/j.hjgc.202107005
引用本文: 刘彦伶, 李天玉, 王小, 解跃峰, 黄霞. 高压膜表面性质对膜污染的影响机制[J]. 环境工程, 2021, 39(7): 46-53,45. doi: 10.13205/j.hjgc.202107005
LIU Yan-ling, LI Tian-yu, WANG Xiao-mao, XIE Yue-feng, HUANG Xia. INFLUENCE MECHANISM OF SURFACE PROPERTIES ON FOULING BEHAVIORS OF HIGH-PRESSURE MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 46-53,45. doi: 10.13205/j.hjgc.202107005
Citation: LIU Yan-ling, LI Tian-yu, WANG Xiao-mao, XIE Yue-feng, HUANG Xia. INFLUENCE MECHANISM OF SURFACE PROPERTIES ON FOULING BEHAVIORS OF HIGH-PRESSURE MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 46-53,45. doi: 10.13205/j.hjgc.202107005

高压膜表面性质对膜污染的影响机制

doi: 10.13205/j.hjgc.202107005
基金项目: 

国家自然科学基金(51978367)

详细信息
    作者简介:

    刘彦伶(1993-),女,助理教授,主要研究方向为纳滤膜技术。liuyanli15@tsinghua.org.cn

INFLUENCE MECHANISM OF SURFACE PROPERTIES ON FOULING BEHAVIORS OF HIGH-PRESSURE MEMBRANES

  • 摘要: 围绕纳滤膜和反渗透膜在水处理应用中的膜污染问题,论述了膜表面亲疏水性、荷电性、官能团和粗糙度4种关键性质对包括有机污染、无机污染、结垢污染和生物污染在内的不同污染类型的影响,分析了研究中由膜表面性质耦合性和污染物性质差异所导致的不同结论,并总结了膜表面各性质对膜污染的影响机制以及存在不确定性的原因,可为针对膜表面性质与膜污染相关性的研究和抗污染膜的研发提供建议。
  • [1] XU H,XIAO K,WANG X M,et al.Outlining the roles of membrane-foulant and foulant-foulant interactions in organic fouling during microfiltration and ultrafiltration:a mini-review[J].Frontiers in Chemistry,2020,8:417.
    [2] 郭驭,王小亻毛.纳滤膜污染机理、表征及控制[J].给水排水,2017,43(9):120-131.
    [3] TONG T Z,WALLACE A F,ZHAO S,et al.Mineral scaling in membrane desalination:mechanisms,mitigation strategies,and feasibility of scaling-resistant membranes[J].Journal of Membrane Science,2019,579:52-69.
    [4] KOCHKODAN V,HILAL N.A comprehensive review on surface modified polymer membranes for biofouling mitigation[J].Desalination,2015,356:187-207.
    [5] TANG C Y,CHONG T H,FANE A G.Colloidal interactions and fouling of NF and RO membranes:a review[J].Advances in Colloid & Interface Science,2011,164(1/2):126-143.
    [6] 邢卫红,仲兆祥,景文珩,等.基于膜表面与界面作用的膜污染控制方法[J].化工学报,2013,64(1):173-181.
    [7] WENZEL,ROBERT N.Surface roughness and contact angle[J].Journal of Physical & Colloid Chemistry,1949,53(9):1466-1467.
    [8] ZHAO S F,LIAO Z P,FANE A,et al.Engineering antifouling reverse osmosis membranes:a review[J].Desalination,2021,499:114857.
    [9] NABE A,STAUDE E,BELFORT G.Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions[J].Journal of Membrane Science,1997,133(1):57-72.
    [10] YAN F,CHEN H,LV Y,et al.Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine[J].Journal of Membrane Science,2016,513:108-116.
    [11] LV Z W,HU J H,ZHENG J F,et al.Antifouling and high flux sulfonated polyamide thin-film composite membrane for nanofiltration[J].Industrial & Engineering Chemistry Research,2016,55:4726-4733.
    [12] KOCHKODAN V,TSARENKO S,POTAPCHENKO N,et al.Adhesion of microorganisms to polymer membranes:a photobactericidal effect of surface treatment with TiO2[J].Desalination,2008,220(1/2/3):380-385.
    [13] BOUSSU K,BELPAIRE A,VOLODIN A,et al.Influence of membrane and colloid characteristics on fouling of nanofiltration membranes[J].Journal of Membrane Science,2007,289(1/2):220-230.
    [14] HUANG X C,LI C,ZUO K C,et al.Predominant effect of material surface hydrophobicity on gypsum scale formation[J].Environmental Science & Technology,2020,54:15395-15404.
    [15] 高晓琪,俞开昌,王小亻毛.疏松型纳滤膜对饮用水中无机阳离子的截留特性及分离选择性[J].环境科学学报,2020,40(8):2700-2707.
    [16] NOVAK S,MAVER U,PETERNEL S,et al.Electrophoretic deposition as a tool for separation of protein inclusion bodies from host bacteria in suspension[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2009,340(1/2/3):155-160.
    [17] GOTTENBOS B,GRIJPMA D W,VAN DER MEI H C,et al.Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria[J].Journal of Antimicrobial Chemotherapy,2001,48:7-13.
    [18] RATHINAM K,ABRAHAM S,OREN Y,et al.Surface-induced silica scaling during brackish water desalination:the role of surface charge and specific chemical groups[J].Environmental Science & Technology,2019,53:5202-5211.
    [19] TONG T Z,ZHAO S,BOO C,et al.Relating silica scaling in reverse osmosis to membrane surface properties[J].Environmental Science & Technology,2017,51:4396-4406.
    [20] STEINER Z,RAPAPORT H,OREN Y,et al.Effect of surface-exposed chemical groups on calcium-phosphate mineralization in water-treatment systems[J].Environmental Science & Technology,2010,44(20):7937-7943.
    [21] MUSTAFA G,WYNS K,BUEKENHOUDT A,et al.New insights into the fouling mechanism of dissolved organic matter applying nanofiltration membranes with a variety of surface chemistries[J].Water Research,2016,93:195-204.
    [22] CONTRERAS A E,STEINER Z,MIAO J,et al.Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D[J].Environmental Science & Technology,2011,45(15):6309-6315.
    [23] AIZENBERG J,BLACK A J,WHITESIDES G M.Control of crystal nucleation by patterned self-assembled monolayers[J].Nature,1999,398(6727):495-498.
    [24] HONG S K,ELIMELECH M.Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes[J].Journal of Membrane Science,1997,132(2):159-181.
    [25] JIN X,HUANG X F,HOEK E M V.Role of specific ion interactions in seawater RO membrane fouling by alginic acid[J].Environmental Science & Technology,2009,43(10):3580-3587.
    [26] MO Y H,TIRAFERRI A,YIP N Y,et al.Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups[J].Environmental Science & Technology,2012,46(24):13253-13261.
    [27] YUAN B B,LI P F,SUN H H,et al.Novel non-trimesoyl chloride based polyamide membrane with significantly reduced Ca2+ surface deposition density[J].Journal of Membrane Science,2019,578:251-262.
    [28] MI B X,ELIMELECH M.Gypsum scaling and cleaning in forward osmosis:measurements and mechanisms[J].Environmental Science & Technology,2010,44(6):2022-2028.
    [29] XIE M,GRAY S R.Gypsum scaling in forward osmosis:role of membrane surface chemistry[J].Journal of Membrane Science,2016,513:250-259.
    [30] GUAN Y F,BOO C,LU X,et al.Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling[J].Water Research,2020,185:116203.
    [31] ZHAO H X,YONG Y,XIN S,et al.The binding of calcium ion with different groups of superplasticizers studied by three DFT methods,B3LYP,M06-2X and M06[J].Computational Materials Science,2018,152:43-50.
    [32] CALLOW M E,FLETCHER R L.The influence of low surface energy materials on bioadhesion:a review[J].International Biodeterioration & Biodegradation,1994,34:333-348.
    [33] LI Y F,SU Y L,ZHAO X T,et al.Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property[J].Journal of Membrane Science,2014,455:15-23.
    [34] GUO Y S,JI Y L,WU B,et al.High-flux zwitterionic nanofiltration membrane constructed by in-situ introduction method for monovalent salt/antibiotics separation[J].Journal of Membrane Science,2019,593:117441.
    [35] JARAMILLO H,BOO C,HASHMI S M,et al.Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis[J].Journal of Membrane Science,2020,618:118568.
    [36] BAEK Y,YU J,KIM S H,et al.Effect of surface properties of reverse osmosis membranes on biofouling occurrence under filtration conditions[J].Journal of Membrane Science,2011,382(1/2):91-99.
    [37] ZHU J Y,HOU J W,ZHANG Y T,et al.Polymeric antimicrobial membranes enabled by nanomaterials for water treatment[J].Journal of Membrane Science,2018,550:173-197.
    [38] BANERJEE I,PANGULE R C,KANE R S.Antifouling coatings:recent developments in the design of surfaces that prevent fouling by proteins,bacteria,and marine organisms[J].Advanced Materials,2011,23(6):690-718.
    [39] HASHINO M,KATAGIRI T,KUBOTA N,et al.Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate[J].Journal of Membrane Science,2011,366(1/2):389-397.
    [40] ELIMELECH M,ZHU X H,CHILDRESS A E,et al.Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes[J].Journal of Membrane Science,1997,127:101-109.
    [41] HOEK E M V,BHATTACHARJEE S,ELIMELECH M.Effect of membrane surface roughness on colloid-membrane DLVO interactions[J].Langmuir,2003,19:4836-4847.
    [42] LIN N H,SHIH W Y,LYSTER E,et al.Crystallization of calcium sulfate on polymeric surfaces[J].Journal of Colloid & Interface Science,2011,356(2):790-797.
    [43] PASMORE M,TODD P,SMITH S,et al.Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling[J].Journal of Membrane Science,2001,194:15-32.
    [44] SHANG C,PRANANTYO D,ZHANG S.Understanding the roughness-fouling relationship in reverse osmosis:mechanism and implications[J].Environmental Science & Technology,2020,54:5288-5296.
    [45] LIN N H,COHEN Y.QCM study of mineral surface crystallization on aromatic polyamide membrane surfaces[J].Journal of Membrane Science,2011,379(1/2):426-433.
    [46] DUAN M R,WANG Z,XU J,et al.Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance[J].Separation & Purification Technology,2010,75(2):145-155.
    [47] BOWEN W R,DONEVA T A.atomic force microscopy studies of membranes:effect of surface roughness on double-layer interactions and particle adhesion[J].Journal of Colloid & Interface Science,2000,229(2):544-549.
    [48] LI R J,LOU Y,XU Y C,et al.Effects of surface morphology on alginate adhesion:molecular insights into membrane fouling based on XDLVO and DFT analysis[J].Chemosphere,2019,233:373-380.
    [49] JIANG Z,KARAN S,LIVINGSTON A G.Membrane fouling:does microscale roughness matter?[J].Industrial & Engineering Chemistry Research,2020,59(12):5424-5431.
    [50] SHANG W T,SUN F Y,JIA W,et al.High-performance nanofiltration membrane structured with enhanced stripe nano-morphology[J].Journal of Membrane Science,2020,600:117852.
    [51] MARUF S H,GREENBERG A R,DING Y.Influence of substrate processing and interfacial polymerization conditions on the surface topography and permselective properties of surface-patterned thin-film composite membranes[J].Journal of Membrane Science,2016,512:50-60.
    [52] CHOI W,LEE C,LEE D,et al.Sharkskin-mimetic desalination membranes with ultralow biofouling[J].Journal of Materials Chemistry A,2018,6(45):23034-23045.
    [53] MARUF S H,WANG L,GREENBERG A R,et al.Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes[J].Journal of Membrane Science,2013,428:598-607.
    [54] MARUF S H,GREENBERG A R,PELLEGRINO J,et al.Critical flux of surface-patterned ultrafiltration membranes during cross-flow filtration of colloidal particles[J].Journal of Membrane Science,2014,471:65-71.
    [55] MARUF S H,GREENBERG A R,PELLEGRINO J,et al.Fabrication and characterization of a surface-patterned thin film composite membrane[J].Journal of Membrane Science,2014,452:11-19.
    [56] WEINMAN S T,HUSSON S M.Influence of chemical coating combined with nanopatterning on alginate fouling during nanofiltration[J].Journal of Membrane Science,2016,513:146-154.
    [57] WANG S,WANG Z Y,XIA J Z,et al.Polyethylene-supported nanofiltration membrane with in situ formed surface patterns of millimeter size in resisting fouling[J].Journal of Membrane Science,2020,620:118830.
    [58] NIE F Q,XU Z K,YE P,et al.Acrylonitrile-based copolymer membranes containing reactive groups:effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility[J].Polymer,2004,45(2):399-407.
    [59] LIN N H,KIM M M,LEWIS G T,et al.Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance[J].Journal of Materials Chemistry,2010,20:4642-4652.
    [60] KANG G D,CAO Y M.Development of antifouling reverse osmosis membranes for water treatment:a review[J].Water Research,2012,46(3):584-600.
    [61] LEE W,AHN C H,HONG S,et al.Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition[J].Journal of Membrane Science,2010,351(1/2):112-122.
    [62] TANG C Y,LECKIE J O.Membrane independent limiting flux for RO and NF membranes fouled by humic acid[J].Environmental Science & Technology,2007,41(13):4767-4773.
    [63] CAO B,ANSARI A,YI X Y,et al.Gypsum scale formation on graphene oxide modified reverse osmosis membrane[J].Journal of Membrane Science,2018,552:132-143.
    [64] BOO C,WANG Y K,ZUCKER I,et al.High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery[J].Environmental Science & Technology,2018,52(13):7279-7288.
    [65] NASROLLAHI N,GHALAMCHI L,VATANPOUR V,et al.Photocatalytic-membrane technology:a critical review for membrane fouling mitigation[J].Journal of Industrial and Engineering Chemistry,2021,93:101-116.
    [66] ESFAHANI M R,KOUTAHZADEH N,ESFAHANI A R,et al.A novel gold nanocomposite membrane with enhanced permeation,rejection and self-cleaning ability[J].Journal of Membrane Science,2019,573:309-319.
    [67] ZHU X W,LIANG H,TANG X B,et al.Supramolecular-based regenerable coating layer of thin-film composite nanofiltration membrane for simultaneously enhanced desalination and antifouling properties[J].ACS Applied Materials & Interfaces,2019,11:21137-21149.
  • 加载中
计量
  • 文章访问数:  183
  • HTML全文浏览量:  28
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回