CFD MODEL COUPLED WITH PARTICLES FORCE ANALYSIS AND ITS APPLICATION IN ULTRAFILTRATION MEMBRANE FOULING
-
摘要: 膜污染可以视为颗粒在膜表面的沉降过程。为深入了解在过滤通道内发生的颗粒迁移和沉降过程,建立了一种耦合颗粒受力的计算流体力学(CFD)模型。通过分析颗粒在超滤过程中的受力,将颗粒受力分析的用户自定义函数(UDF)与CFD中的离散相模型(DPM)耦合,对颗粒的迁移轨迹及沉降进行模拟,并利用过滤实验和微粒子图像测速技术(Micro-PIV)对CFD模拟结果进行了验证。结果表明:颗粒沉降概率与跨膜压差呈正相关,与错流速度呈负相关,超滤实验证明了CFD模拟颗粒沉降的准确性。Micro-PIV示踪粒子的运动轨迹记录膜腔内的速度场分布也验证了CFD模拟流场的准确性。CFD模型可视化地并直观地揭示了膜过程流场和颗粒运动情况,为理解膜污染机制提供了科学依据,对优化膜模块具有重要的指导作用。Abstract: Membrane fouling can be defined as a particle deposition process on the surface of membrane. In order to understand the particle migration and deposition process in the filter channel, a computational fluid dynamics(CFD) model coupled with particle force analysis was studied. By editing the user-defined function(UDF) of the force of the particles and combining with the discrete phase model(DPM) in CFD, the particle behaviors were simulated during ultrafiltration. The CFD simulation results were further verified by batch-scale experiments and the accuracy of CFD simulation of particle deposition was evidenced by in-situ Micro-PIV visualization.Resultsshowed that the particle deposition probability was positively related to the transmembrane pressure difference, and inversely related to the cross-flow velocity. The velocity field in the membrane cavity was recorded by the trajectory of the tracer particles. This CFD model visually and intuitively revealed the flow field of the membrane process and the movement of particles, and provided a scientific basis for understanding membrane fouling and optimizing membrane modules.
-
[1] MENG F G,ZHANG S Q,OH Y,et al.Fouling in membrane bioreactors:an updated review[J].Water Research,2017,114:151-180. [2] DU X,QU F S,LIANG H,et al.Cake properties in ultrafiltration of TiO2 fine particles combined with HA:in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling[J].Environmental Science & Pollution Research International,2016,23(9):8806-8818. [3] FRÉDÉRIC L,PHILIPPE L C,SERGE S.TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids.pH and concentration effects on nanoparticle stability[J].Water Research,2013,47(16):6052-6063. [4] LIN T,LU Z J,CHEN W.Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system[J].Desalination,2015,357(9679):26-35. [5] MENG X R,TANG W T,WANG L,et al.Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy:effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface[J].Journal of Membrane Science,2015,487:180-188. [6] 唐娜,刘天宇,华欣欣,等.真空膜蒸馏过程CFD模拟及膜组件设计[J].膜科学与技术,2020,40,201(2):101-109. [7] 瞿广飞,安之,宁平,等.数值模拟在污水生物处理领域应用进展[J].环境工程,2020,38(3):99-104,179. [8] TSUJI Y,KAWAGUCHI T,TANAKA T.Discrete particle simulation of two-dimensional fluidized bed[J].Powder Technology,1998,98(1):79-87. [9] KAFUI K D,THORNTON C,ADAMS M J.Discrete particle-continuum fluid modelling of gas-solid fluidised beds[J].Chemical Engineering Science,2002,57(13):2395-2410. [10] 荣双,王萍.风向对街谷内颗粒物扩散的DPM数值模拟研究[J].环境科学与技术,2016,39(2):38-42. [11] 陈晓乐,佟振博,钟文琪,等.下呼吸道内可吸入颗粒物沉积的CFD-DPM数值模拟[J].中国工程热物理学会论文,2015. [12] 陈磊,李长俊,季楚凌.水平弯管内硫沉积数值模拟研究[J].中国安全生产科学技术,2015,11(2):28-35. [13] CHEN Q,AHMADI G.Deposition of particles in a turbulent pipe flow[J].Journal of Aerosol Science,1997,28(5):789-796. [14] LI A,AHMADI G.Deposition of aerosols on surfaces in a turbulent channel flow[J].Int J Eng Sci,1993,31(3):435-451. [15] AMYLI,GOODARZ AHMADI.Computer simulation of deposition of aerosols in a turbulent channel flow with rough walls[J].Aerosol Science & Technology,1993,18(1):11-24. [16] LI A,AHMADI G,BAYER R G,et al.Aerosol particle deposition in an obstructed turbulent duct flow[J].Journal of Aerosol Science,1994,25(1):91-112. [17] 孟晓刚,倪晋仁.固液两相流中颗粒受力及其对垂向分选的影响[J].水利学报,2002,33(9):6-13. [18] 朱亮,汪跃,陈琳,等.基于CFD仿真模拟及PIV粒子示踪相结合法超滤膜组件优化[J].河海大学学报(自然科学版),2019,47(5):402-410. [19] 谢重,齐欢,杨杰.液动压悬浮抛光固液两相流CFD数值模拟及PIV验证[J].机电工程,2020,37(4):389-393. [20] REY C,HENGL N,BAUP S,et al.Velocity,stress and concentration fields revealed by micro-PIV and SAXS within concentration polarization layers during cross-flow ultrafiltration of colloidal Laponite clay suspensions[J].Journal of Membrane Science,2019,578:69-84. [21] YU D W,LIU M M,LIU J B,et al.Effects of mixed-liquor rheology on vibration of hollow-fiber membrane via particle image velocimetry and computational fluid dynamics[J].Separation & Purification Technology,2020,239:116590. [22] WU Z W,WU Z C.A Review of membrane fouling in MBRs:characteristics and role of sludge cake formed on membrane surfaces[J].Separation Science & Technology,2009,44(15):3571-3596. [23] CHOO H K,LEE,et al.Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor[J].Water Research,1998,32(11):3387-3397. [24] ALTMANN J,RIPPERGER S.Particle deposition and layer formation at the crossflow microfiltration[J].Journal of Membrane Science,1997,124(1):119-128. [25] BELFORT G,DAVIS R H,ZYDNEY A L.The behavior of suspensions and macromolecular solutions in crossflow microfiltration[J].Journal of Membrane Science,1994,96(1/2):1-58. [26] 李富根.粘性泥沙悬浮体系絮凝特性的初步研究[D].北京:清华大学,2005. [27] 周筱,董杰,孙榕,等.紫外分光光度法测定玻璃样品[J].分析化学进展,2017,7(3):171-184. [28] ZOUBEIK M,ISMAIL M,SALAMA A,et al.New developments in membrane technologies used in the treatment of produced water:a review[J].Arabian Journal for Science & Engineering,2017(2):1-26. [29] BAKER J S,DUDLEY L Y.Biofouling in membrane systems:a review[J].Desalination,1998,118(1):81-89.
点击查看大图
计量
- 文章访问数: 243
- HTML全文浏览量: 33
- PDF下载量: 5
- 被引次数: 0