CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝-臭氧/吸附-超滤-反渗透组合工艺对页岩气返排液水质净化效能分析

白玉华 孙玉 吴明火 周云 唐怀彬 曾艳 刘百仓

白玉华, 孙玉, 吴明火, 周云, 唐怀彬, 曾艳, 刘百仓. 混凝-臭氧/吸附-超滤-反渗透组合工艺对页岩气返排液水质净化效能分析[J]. 环境工程, 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015
引用本文: 白玉华, 孙玉, 吴明火, 周云, 唐怀彬, 曾艳, 刘百仓. 混凝-臭氧/吸附-超滤-反渗透组合工艺对页岩气返排液水质净化效能分析[J]. 环境工程, 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015
BAI Yu-hua, SUN Yu, WU Ming-huo, ZHOU Yun, TANG Huai-bin, ZENG Yan, LIU Bai-cang. WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015
Citation: BAI Yu-hua, SUN Yu, WU Ming-huo, ZHOU Yun, TANG Huai-bin, ZENG Yan, LIU Bai-cang. WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 122-127. doi: 10.13205/j.hjgc.202107015

混凝-臭氧/吸附-超滤-反渗透组合工艺对页岩气返排液水质净化效能分析

doi: 10.13205/j.hjgc.202107015
基金项目: 

国家自然科学基金面上项目(51678377,52070134)

详细信息
    作者简介:

    白玉华(1981-),女,硕士,高级工程师,主要从事水处理技术研究与工程设计工作。baiyuhua@cdu.edu.cn

    通讯作者:

    刘百仓(1981-),男,博士,教授,主要研究方向为水和污水处理理论与技术研究。bcliu@scu.edu.cn

WATER PURIFICATION EFFICIENCY OF SHALE GAS FLOWBACK WATER BY COAGULATION-OZONE/ADSORPTION-UF-RO COMBINED PROCESS

  • 摘要: 页岩气返排液中部分小分子有机物如二甲基苄胺(DMBA)、吲哚啉和6-甲基喹啉较难去除,采用混凝-臭氧/吸附-超滤-反渗透组合工艺处理页岩气返排液,探究了其有机、无机组分的去除规律。结果表明:混凝-臭氧-超滤-反渗透组合工艺对离子的去除率为96.7%~99.86%,对DOC和UV254的去除率分别为98.7%和99.13%,对DMBA、吲哚啉和6-甲基喹啉去除率分别为82.02%、98.02%和97.67%;混凝-吸附-超滤-反渗透组合工艺对离子的去除率为95.99%~99.86%,对DOC和UV254的去除率分别为95.31%和97.54%,对DMBA、吲哚啉和6-甲基喹啉去除率分别为70.19%、94.70%和87.93%。混凝-臭氧/吸附-超滤-反渗透工艺可有效去除返排液中的离子、DOC和UV254,对DMBA、吲哚啉和6-甲基喹啉的去除效果显著,有利于返排液的外部回用。
  • [1] KARGBO D M,WILHELM R G,CAMPBELL D J.Natural gas plays in the Marcellus Shale:challenges and potential opportunities[J].Environmental Science & Technology,2010,44:5679-5684.
    [2] QIN Y,EDWARDS R,TONG F,et al.Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?[J].Environmental Science & Technology,2017,51(5):2554-2562.
    [3] SHAFFER D L,CHAVEZ L H A,BEN-SASSON M,et al.Desalination and reuse of high-salinity shale gas produced water:drivers,technologies,and future directions[J].Environmental Science & Technology,2013,47(17):9569-9583.
    [4] JACKSON R B,VENGOSH A,CAREY J W,et al.The environmental costs and benefits of fracking[J].Annual Review of Environment and Resources,2014,39:327-362.
    [5] OLSSON O,WEICHGREBE D,ROSENWINKEL K H.Hydraulic fracturing wastewater in Germany:composition,treatment,concerns[J].Environmental Earth Sciences,2013,70(8):3895-3906.
    [6] ESTRADA J M,BHAMIDIMARRI R.A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J].Fuel,2016,182:292-303.
    [7] BARBOT E,VIDIC N S,GREGORY K B,et al.Spatial and temporal correlation of water quality parameters of produced waters from Devonian-Age shale following hydraulic fracturing[J].Environmental Science & Technology,2013,47(6):2562-2569.
    [8] ROSENBLUM J,THURMAN E M,FERRER I,et al.Organic chemical characterization and mass balance of a hydraulically fractured well:from fracturing fluid to produced water over 405 days[J].Environmental Science & Technology,2017,51(23):14006-14015.
    [9] KONG F X,CHEN J F,WANG H M,et al.Application of coagulation-UF hybrid process for shale gas fracturing flowback water recycling:performance and fouling analysis[J].Journal of Membrane Science,2017,524:460-469.
    [10] BUTKOVSKYI A,BRUNING H,KOOLS S A E,et al.Organic pollutants in shale gas flowback and produced waters:identification,potential ecological impact,and implications for treatment strategies[J].Environmental Science & Technology,2017,51(9):4740-4754.
    [11] HE C,WANG X H,LIU W S,et al.Microfiltration in recycling of Marcellus Shale flowback water:solids removal and potential fouling of polymeric microfiltration membranes[J].Journal of Membrane Science,2014,462:88-95.
    [12] GREGORY K B,VIDIC R D,DZOMBAK D A.Water management challenges associated with the production of shale gas by hydraulic fracturing[J].Elements,2009,7(3):181-186.
    [13] PIEMONTEA V,PRISCIANDAROB M,MASCISA L,et al.Reverse osmosis membranes for treatment of produced water:a process analysis[J].Desalination and Water Treatment,2015,55(3):565-574.
    [14] XIONG B,ZYDNEY A L,KUMAR M.Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play[J].Water Research,2016,99:162-170.
    [15] BUTKOVSKYI A,FABER A H,WANG Y,et al.Removal of organic compounds from shale gas flowback water[J].Water Research,2018,138:47-55.
    [16] LESTER Y,FERRER I,THURMAN E M,et al.Characterization of hydraulic fracturing flowback water in Colorado:implications for water treatment[J].Science of The Total Environment,2015,512/513:637-644.
    [17] CHANG H Q,LIU B C,YANG B X,et al.An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water[J].Separation and Purification Technology,2019,211:310-321.
    [18] HAO H W,HUANG X,GAO C J,et al.Application of an integrated system of coagulation and electrodialysis for treatment of wastewater produced by fracturing[J].Desalination and Water Treatment,2014,55(8):2034-2043.
    [19] JIANG Q Y,RENTSCHLER J,PERRONE R,et al.Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production[J].Journal of Membrane Science,2013,431:55-61.
    [20] GUO C,CHANG H Q,LIU B C,et al.A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water[J].Environmental Science:Water Research & Technology,2018,4(7):942-955.
    [21] SHANG W,TIRAFERRI A,HE Q,et al.Reuse of shale gas flowback and produced water:effects of coagulation and adsorption on ultrafiltration,reverse osmosis combined process[J].Science of the Total Environment,2019,689:47-56.
    [22] TANG P,LIU B C,ZHANG Y L,et al.Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis[J].Chemical Engineering Journal,2020,392:123743.
    [23] CHANG H Q,QU F S,LIU B C,et al.Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid:effects of membrane properties and backwash water composition[J].Journal of Membrane Science,2015,493:723-733.
    [24] WANG J L,BAI Z Y.Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J].Chemical Engineering Journal,2017,312:79-98.
    [25] BELLONA C,DREWES J E,XU P,et al.Factors affecting the rejection of organic solutes during NF/RO treatment:a literature review[J].Water Research,2004,38(12):2795-2809.
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回