APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY
-
摘要: 提出了1种由3个纳滤子系统构成的高分离纳滤系统,开展了该纳滤系统在煤化工高盐废水零排放工程中的应用及效果分析。结果表明:纳滤系统的SO42-和Cl-平均截留率分别为99.7%和-13.7%,平均水回收率高达81.9%,对1、2价盐分离效果较好;纳滤系统和各子系统在连续运行中的水回收率和运行压力波动较小,系统运行稳定性较高;纳滤系统的COD、Ca2+和Mg2+平均截留率分别为47.6%、76.9%和86.0%,而纳滤1、2、3子系统的清洗频率分别仅为每月2.1,0,1.0次,表明系统具有较高的抗污染性能。工程应用表明,高分离纳滤系统在高盐废水零排放领域具有很好的应用前景。Abstract: A high separation nanofiltration system consisting of 3 sub-nanofiltration systems was proposed and its effect in zero discharge project of high salt wastewater from coal chemical industry was analyzed.Resultsshowed that the average rejection rates of SO42- and Cl- were 99.7% and-13.7% respectively, and the average water recovery rate was 81.9%, which indicated a good separation effect of monovalent and divalent salts. The fluctuation of water recovery rates and operating pressures of nanofiltration system and its subsystems in continuous operation were small, and the system operation stability was high. The average rejection rates of COD, Ca2+ and Mg2+ were 47.6%, 76.9% and 86.0% respectively, while the cleaning frequencies were 2.1, 0 and 1.0 times per month respectively, which indicated that the system had a high anti-fouling performance. The plant demonstrated that the high separation nanofiltration system had a promising prospect in the field of zero discharge of high salt wastewater.
-
Key words:
- nanofitration /
- high salt wastewater /
- zero discharge /
- coal chemical industry /
- rejection rate
-
[1] 何睦盈,张亚峰.冷冻脱硝-纳滤-热泵蒸发技术处理高盐废水[J].给水排水,2013,39(11):60-63. [2] 赛世杰.纳滤膜在高盐废水零排放领域的分盐性能研究[J].工业水处理,2017,37(9):75-78. [3] 王晓琳,丁宁.反渗透和纳滤技术与应用[M].北京:化学工业出版社,2005. [4] 韩永萍,林强,李亚秋.纳滤膜传质过程的研究[J].化学世界,2011,52(12):760-764,733,730,742. [5] 王钊.高分子膜错流纳滤过程的理论分析与有限元模拟[D].济南:山东大学,2014. [6] VEZZANI D,BANDINI S.Donnan equilibrium and dielectric exclusion for characterization of nanofiltration membranes[J].Desalination,2002,149:477-483. [7] 王智.纳滤截留无机离子特性及机理研究[D].北京:清华大学,2018. [8] RAUTENBACH R,GROSCHL A.Separation potential of nanofiltration membranes[J].Desalination,1990,77:73-84. [9] GARCIA A J,DICKSON J M.Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions[J].Journal of Membrane Science,2004,235:1-13. [10] DEY T K,RAMACHANDHRAN V,MISRA B M.Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration membranes[J].Desalination,2000,127:165-175. [11] 熊日华,何灿,马瑞,等.高盐废水分盐结晶工艺及其技术经济分析[J].煤炭科学技术,2018,46(9):37-43. [12] 李东,桑华俭,李杨,等.高盐废水零排放结晶盐资源化工艺分析与比较[J].工业用水与废水,2019,50(6):1-5. [13] 姚敏,于双恩,金政伟,等.煤化工含盐废水纳滤分盐效果研究[J].煤炭加工与综合利用,2020(6):46-50. [14] 蒋路漫,周振,田小测,等.电厂烟气脱硫废水零排放工艺中试研究[J].热力发电,2019,48(1):103-109. [15] 徐志清,赵焰,陆梦楠,等.基于膜法的火电厂废水零排放技术研究及应用[J].中国电机工程学报,2019,39(增刊):148-154. [16] 邵国华,刘艳军,雍骏.纳滤膜处理脱硫废水近零排放资源化实验研究[J].膜科学与技术,2019,39(6):124-128. [17] 江成广.煤化工与矿井水浓盐水资源化利用技术开发[J].煤化工,2019,47(3):13-16. [18] 窦晓春.煤化工高盐水近零排放及分质盐技术研究[D].北京:北京化工大学,2018. [19] 赛世杰,党平,张震,等.高水回收率和高硫酸根截留率的组合纳滤分盐系统:201721223252.6[P].2017-09-22. [20] 李琨.纳滤分离煤化工浓盐水的效能及膜污染机理研究[D].哈尔滨:哈尔滨工业大学,2020. [21] MIR F Q,SHUKLA A.Negative rejection of NaCl in ultrafiltration of aqueous solution of NaCl and KCl using sodalite octahydrate zeolite-clay charged ultrafiltration membrane[J].Industrial & Engineering Chemistry Research,2010,49. [22] HAJIBABANIA S,VERLIEFDE A,MC DONALD J A,et al.Fate of trace organic compounds during treatment by nanofiltration[J].Journal of Membrane Science,2011,373:130-139. [23] KOTRAPPANAVAR N S,HUSSAIN A A,ABASHAR M E E,et al.Prediction of physical properties of nanofiltration membranes for neutral and charged solutes[J].Desalination,2011,280:174-182. [24] 王帅,郭慧枝,袁江龙,等.煤化工高盐废水的纳滤膜分盐效果分析[J].工业用水与废水,2019,50(3):35-40. [25] 张生兰.纳滤+高压反渗透+蒸发结晶组合工艺在煤化工废水零排放中的应用[J].节能环保,2020,10(7):6-8. [26] 夏俊方.纳滤膜在高盐废水零排放应用中的分盐特征研究[J].工业用水与废水,2020,51(1):28-31. [27] 张小亚,苑宏英,石雪莉,等.氯化钠/硫酸钠体系的纳滤分盐试验分析[J].膜科学与技术,2020,40(5):111-117.
点击查看大图
计量
- 文章访问数: 233
- HTML全文浏览量: 52
- PDF下载量: 20
- 被引次数: 0