A CASE STUDY AND OPERATION ANALYSIS OF ENGINEERING BACTERIAL AND DUAL-MEMBRANE ENHANCED TREATMENT FOR PESTICIDE WASTEWATER
-
摘要: 农药化工废水水质复杂、可生化性差,采用传统生物工艺的处理难度大且效果不理想。针对国内某农药化工废水蒸发后产生的污凝水,采用常规生物处理后,出水化学需氧量(COD)、总氮(TN)及氨氮(NH3-N)不能达到当地污水处理厂收纳标准的问题,该项目采用外部投加工程菌以提高原生化单元的污水理效能,并增设超滤和反渗透双膜工艺以保障出水水质。改造后的工艺系统调试表明,工程菌增效提升了生化处理单元对污水COD及TN的去除率(分别达到85%与67%),双膜工艺保障处理后,水质[ρ(COD)<500 mg/L,ρ(TN)<70 mg/L,ρ(NH3-N)<45 mg/L]达到下游污水处理厂的收纳标准。经成本核算,该厂污凝水处理项目运行成本为52.77元/t。工程菌增效/双膜工艺改造方案实现了对该厂污水的达标处理排放。Abstract: Owing to the high chemical oxygen demand(COD), organic nitrogen content, and toxicity, the treatment effectiveness of conventional process for pesticide chemical wastewater is relativity low. Treatment of pesticide wastewater becomes a concerned issue in water treatment processes. Aiming at the problems that the condensate wastewater generated by the pesticide wastewater was not properly treated by conventional biological treatment processes, this project proposed a reconstruction scheme by adopting advanced biological treatment process using engineering bacteria synergism and dual-membrane process including ultrafiltration(UF) membrane and reverse osmosis(RO) membrane. After the reconstruction, stable wastewater treatment performance with improved rejection of the COD and TN(with the rejection rate of 85% and 67%, respectively) was observed in the system, and the start-up time of the biochemical system was also shortened. Besides, the dual-membrane process guaranteed the quality of the effluent with COD<500 mg/L, TN<70 mg/L, and NH3-N<45 mg/L, reaching the standard requirements of the downstream sewage treatment plant. In addition, the total operation cost of the project was 2.77 RMB/ton. The application of the advanced biological treatment process using engineering bacteria synergism, combined with the dual-membrane process guaranteed the efficient treatment of the condensate wastewater from the pesticide chemical plant.
-
[1] 原效凯,李巍,毕芳,等.化工农药废水处理提标改造工程设计与实践[J].中国给水排水,2020,36(4):114-118. [2] 潘兴华,李栋,蔡国飞,等.农药废水BAF处理工程的调试过程及关键问题[J].化工管理,2020(34):94-95. [3] 麻微微,韩洪军,徐春艳,等.铁碳微电解预处理煤热解废水的效能及生物毒性研究[J].煤炭科学技术,2018(9):62-67. [4] 李志远.芬顿氧化混凝沉淀处理煤化工废水生化出水试验研究[D].哈尔滨:哈尔滨工业大学,2013. [5] 韩洪军,郑梦启,徐春燕,等.煤热解废水典型工艺流程中芳香化合物的降解特性[J].环境工程学报,2020,14(4):935-942. [6] 刘扬帆.A/O-MBR和RO组合工艺处理高氨氮垃圾渗沥液的工程应用[J].工业用水与废水,2018,49(6):69-72. [7] 王惠娥,王学英,陈彬,等.微生物法处理高含氮难降解有机废水影响的研究[J].当代化工研究,2020(20):105-108. [8] WANG H L,LI P,WANG Y,et al.Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater[J].Journal of Hazardous Materials,2017,321:820-829. [9] ARJOON A,OLANIRAN A O,PILLAY B.Enhanced 1,2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation[J].Chemosphere,2013,93(9):1826-1834. [10] WANG M Z,YANG G Q,MIN H,et al.Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp.HF-1 in a sequencing batch reactor treating tobacco wastewater:degradation study and analysis of its mechanisms[J].Water research,2009,43(17):4187-4196. [11] RO K S,BABCOCK R W,STENSTROM M K.Demonstration of bioaugmentation in a fluidized-bed process treating 1-naphthylamine[J].Water Research,1997,31(7):1687-1693. [12] WANG Q Y,ZENG H,WU Z C,et al.Impact of sodium hypochlorite cleaning on the surface properties and performance of PVDF membranes[J].Applied Surface Science,2018,428:289-295. [13] LEE Y,CHO J,SEO Y,et al.Modeling of submerged membrane bioreactor process for wastewater treatment[J].Desalination,2002,146(1/2/3):451-457. [14] LIU Y L,MI B X.Combined fouling of forward osmosis membranes:synergistic foulant interaction and direct observation of fouling layer formation[J].Journal of Membrane Science,2012,407:136-144. [15] CHEN G,WANG Z W,LI X M,et al.Concentrating underground brine by FO process:influence of membrane types and spacer on membrane scaling[J].Chemical Engineering Journal,2016,285:92-100. [16] CHENG Z Q,CHEN M,XIE L Q,et al.Bioaugmentation of a sequencing batch biofilm reactor with Comamonas testosteroni and Bacillus cereus and their impact on reactor bacterial communities[J].Biotechnology letters,2015,37(2):367-373. [17] YU F B,ALI S W,GUAN L B,et al.Bioaugmentation of a sequencing batch reactor with Pseudomonas putida ONBA-17,and its impact on reactor bacterial communities[J].Journal of Hazardous Materials,2010,176(1/2/3):20-26. 期刊类型引用(7)
1. 黄威翔,高川作,吴波,陈坦,杨婷,张冰. 基于STIRPAT模型的广西碳达峰路径. 环境科学. 2025(02): 682-695 . 百度学术
2. 姜江. 水泥工业碳排放的影响因素量化研究. 环境科学与管理. 2025(02): 52-55+88 . 百度学术
3. 王思琪. 基于GDIM的京津冀公共建筑碳排放影响因素分析. 上海节能. 2025(03): 404-413 . 百度学术
4. 李菲菲,徐绘薇,崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究. 综合智慧能源. 2024(08): 12-19 . 百度学术
5. 李艳芳,张蒙悯,吴桂君,蒋嘉伟,方芳. 河北省建筑业碳排放脱钩及影响因素研究. 河北企业. 2024(09): 59-63 . 百度学术
6. 吴永江. 基于LMDI模型的高铁客运站碳排放关键驱动因素研究. 铁道建筑技术. 2024(09): 29-31+64 . 百度学术
7. 高立兵. 基于LMDI的甘肃省工业碳排放现状及影响因子分解研究. 科技创新与生产力. 2024(10): 67-70 . 百度学术
其他类型引用(27)
-

计量
- 文章访问数: 147
- HTML全文浏览量: 22
- PDF下载量: 8
- 被引次数: 34