中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工湿地-微生物燃料电池耦合系统的研究进展及展望

石玉翠 罗昕怡 唐刚 叶延超 游少鸿

石玉翠, 罗昕怡, 唐刚, 叶延超, 游少鸿. 人工湿地-微生物燃料电池耦合系统的研究进展及展望[J]. 环境工程, 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004
引用本文: 石玉翠, 罗昕怡, 唐刚, 叶延超, 游少鸿. 人工湿地-微生物燃料电池耦合系统的研究进展及展望[J]. 环境工程, 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004
SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004
Citation: SHI Yu-cui, LUO Xin-yi, TANG Gang, YE Yan-chao, YOU Shao-hong. RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 25-33. doi: 10.13205/j.hjgc.202108004

人工湿地-微生物燃料电池耦合系统的研究进展及展望

doi: 10.13205/j.hjgc.202108004
基金项目: 

国家自然科学基金项目(51868010);桂林市科学研究与技术开发计划课题(20190219-3)。

详细信息
    作者简介:

    石玉翠(1994-),女,博士研究生,主要研究方向为废水生物处理。504793586@qq.com

    通讯作者:

    游少鸿(1978-),男,教授,主要研究方向为污水生态处理。646761963@qq.com

RESEARCH PROGRESS AND PROSPECTS OF CONSTRUCTED WETLAND-MICROBIAL FUEL CELL COUPLING SYSTEM

  • 摘要: 人工湿地(CW)与微生物燃料电池(MFC)的耦合系统是一种新型的生物电化学系统。该系统可以在生物产电的同时进行废水处理。结合近年来对人工湿地-微生物燃料电池耦合系统(CW-MFC)的系统产电和污染物降解性能的研究,综述了CW-MFC系统的最新研究进展,主要从系统结构(湿地植物、微生物、电极材料、基质材料)和影响系统运行因素(水力停留时间、溶解氧、有机负荷及废水成分、氧化还原电位)2个方面概述。最后总结了CW-MFC面临的挑战及今后的发展方向,并展望了该系统的研究潜力。
  • [1] SAMAL K,DASH R R,BHUNIA P.Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater:a statistical and kinetic modelling approach[J].Ence of the Total Environment,2018,645(7):156-169.
    [2] LI X H,ZHU W G,MENG G J,et al.Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration[J].Journal of Environmental Management,2020,273:111-120.
    [3] TEMEL F A,ÖZYAZICI G,USLU V R,et al.Full scale subsurface flow constructed wetlands for domestic wastewater treatment:3 years' experience[J].Environmental Progress & Sustainable Energy,2018,37(4):1348-1360.
    [4] TURKER O C,TURE C,BOCUK H,et al.Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution[J].Environmental Science and Pollution Research International,2016,23(19):19302-19316.
    [5] ZHANG X W,HU Z,HUU H N,et al.Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland[J].Water Research,2018,130(11):79-87.
    [6] SGROI M,PELISSARI C,PAOLO R P,et al.Removal of organic carbon,nitrogen,emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J].Chemical Engineering Journal,2018,332(9):619-627.
    [7] ATIF M,MIKLAS S,RORY H,et al.Long-term performance of a representative integrated constructed wetland treating farmyard runoff[J].Ecological Engineering,2008,35(5):779-790.
    [8] KHAN S,AHMAD I,SHAH T,et al.Use of constructed wetland for the removal of heavy metals from industrial wastewater[J].Journal of Environmental Management,2009,90(11):3451-3457.
    [9] SPOKAS L A,VENEMAN P L M,SIMKINS S C,et al.Performance evaluation of a constructed wetland treating high-ammonium primary domestic wastewater effluent[J].Water Environment Research,2010,82(7):592-600.
    [10] JAROO S S,JUMAAH G F,ABBAS T R.Photosynthetic microbial desalination cell to treat oily wastewater using microalgae chlorella vulgaris[J].Civil Engineering Journal,2019,5(12):2686-2699.
    [11] MOAYEDI A,YARGHOLI B,PAZIRA E,et al.Investigated of desalination of saline waters by using dunaliella salina algae and its effect on water ions[J].Civil Engineering Journal,2019,5(11):2450-2460.
    [12] WANG Y,LIU Y,ZHAN W,et al.Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica):a three-year field study[J].Ecotoxicology and Environmental Safety,2020,197:110600.
    [13] LIU X L,ZHANG K,FAN L Q,et al.Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment[J].Environmental ence & Pollution Research,2018,25(24):24426-24444.
    [14] TINGRU Y,SHU H T,MARTIN R,et al.Biotransformation of Sulfluramid (N-ethyl perfluorooctane sulfonamide) and dynamics of associated rhizospheric microbial community in microcosms of wetland plants[J].Chemosphere,2018,211(7):379-389.
    [15] SONG H L,ZHANG S,GUO J,et al.Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J].Chemosphere,2018,203(4):434-441.
    [16] TASCA A L,PUCCINI M,FLETCHER A.Terbuthylazine and desethylterbuthylazine:Recent occurrence,mobility and removal techniques[J].Chemosphere,2018,202(3):94-104.
    [17] K"OREJE K O,KANDIE F J,VERGEYNST L,et al.Occurrence,fate and removal of pharmaceuticals,personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin,Kenya[J].Science of the Total Environment,2018,637-638(4):336-348.
    [18] YI X,TRAN N H,YIN T,et al.Removal of selected PPCPs,EDCs,and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system[J].Water Research,2017,121(5):46-60.
    [19] CHONDE S G.International journal of microbial fuel cell?:a new approach of wastewater treatment with power generation.International Journal of Chemical,Environmental and Pharmaceutical Research,2014,5(1):8-12.
    [20] QUAN X C,MEI Y,XU H D,et al.Optimization of Pt-Pd alloy catalyst and supporting materials for oxygen reduction in air-cathode microbial fuel cells[J].Electrochimica Acta,2015,165(2):72-77.
    [21] SUN M,ZHAI L F,LI W W,et al.Harvest and utilization of chemical energy in wastes by microbial fuel cells[J].Chemical Society Reviews,2016,45(10):2847-2870.
    [22] SANTORO C,ARBIZZANI C,ERABLE B,et al.Microbial fuel cells:from fundamentals to applications:a review[J].Journal of Power Sources,2017,356(3):225-244.
    [23] LOGAN B E.Microbial Fuel Cells[M].John Wiley & Sons,Inc.:2007-12-21.
    [24] WU L C,CHEN C Y,LIN T K,et al.Highly efficient removal of victoria blue R and bioelectricity generation from textile wastewater using a novel combined dual microbial fuel cell system[J].Chemosphere,2020,258:127326.
    [25] CHEN C Y,TSAI T H,WU P S,et al.Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater[J].Journal of Environmental Science and Health,2018,53(2):108-115.
    [26] CHEN C Y,WANG G H,TSAI T H,et al.Continuous bioelectricity generation through treatment of Victoria blue R:a novel microbial fuel cell operation[J].Journal of Environmental ence & Health Part A Toxic/hazardous Substances & Environmental Engineering,2017,52(9):916-920.
    [27] DU H X,LI F S.Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge[J].Journal of Cleaner Production,2016,143(12):336-344.
    [28] ZHANG S,SONG H L,YANG X L,et al.A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J].Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies,2018,256(2):224-231.
    [29] ALI A,GRAEME J,GUILLERMO Z.Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination[J].Energy,2016,103(2):110-118.
    [30] AKILI D,IBRAHIM K,JONG-MIHN W.Advances in seawater desalination technologies[J].Desalination,2007,221(1):47-69.
    [31] REZK H,SAYED E T,AL-DHAIFALLAH M,et al.Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system[J].Energy,2019,175(2):423-433.
    [32] ARDAKANI M N,GHOLIKANDI G B.Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery:a state-of-the-art review[J].Biomass and Bioenergy,2020,141:105726.
    [33] WANG W J,ZHANG Y,LI M X,et al.Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation:a review[J].Bioresource Technology,2020,314:123808.
    [34] YANG Y G,GUO J,SUN G P,et al.Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12[J].Bioresource Technology,2013,128(10):472-478.
    [35] ERABLE B,ETCHEVERRY L,BERGEL A.From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES):maximizing chemical oxygen demand (COD) removal from wastewater[J].Biofouling,2011,27(3):319-326.
    [36] RAMIREZ-VARGAS C,AMANDA P,CARLOS A,et al.Microbial electrochemical technologies for wastewater treatment:principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands[J].Water,2018,10(9):1128-1156.
    [37] DI L Y,LI Y,NIE L K,et al.Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution[J].Journal of Hazardous Materials,2020,394:122542.
    [38] XIE T Y,JING Z Q,HU J,et al.Degradation of nitrobenzene-containing wastewater by a microbial-fuel-cell-coupled constructed wetland[J].Ecological Engineering,2018,112(12):65-71.
    [39] FANG Z,SONG H L,CANG N,et al.Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J].Bioresource Technology,2013,144(6):165-171.
    [40] OON Y L,ONG S A,HO L N,et al.Constructed wetland-microbial fuel cell for azo dyes degradation and energy recovery:influence of molecular structure,kinetics,mechanisms and degradation pathways[J].Science of the Total Environment,2020,720:137370.
    [41] WEN H Y,ZHU H,YAN B X,et al.Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells:roles of plant and circuit operation mode[J].Chemosphere,2020,250:126252.
    [42] ZHANG S,YANG X L,LI H,et al.Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells[J].Bioresource Technology,2017,244(7):345-352.
    [43] SAZ Ç,TURE C,TURKER O C,et al.Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J].Environmental Science and Pollution Research International,2018,25(9):8777-8792.
    [44] REGMI R,NITISORAVUT R,KETCHAIMONGKOL J.A decade of plant-assisted microbial fuel cells:looking back and moving forward[J].Biofuels,2018,9(5):605-612.
    [45] SONG H L,ZHANG S,LONG X Z,et al.Optimization of bioelectricity generation in constructed wetland-coupled microbial fuel cell systems[J].Water,2017,9(3):185-197.
    [46] REGMI R,NITISORAVUT R,CHAROENROONGTAVEE S,et al.Earthen pot-plant microbial fuel cell powered by vetiver for bioelectricity production and wastewater treatment[J].Clean-Soil,Air,Water:A Journal of Sustainability and Environmental Safety,2018,46(3):1700193.
    [47] XU F,OUYANG D L,RENE E R,et al.Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater[J].Bioresource Technology,2019,288:121462.
    [48] FANG Z,CAO X,LI X X,et al.Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance[J].International Biodeterioration & Biodegradation,2018,129(12):1-9.
    [49] ADAM O,MOHAMEDJAFFER G,DYLLON G R.Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants[J].Journal of Water Process Engineering,2019,32:100930.
    [50] LIANG Y X,ZHU H,BAUELOS G,et al.Constructed wetlands for saline wastewater treatment:a review[J].Ecological Engineering,2017,98(11):275-285.
    [51] JAN V.Plants used in constructed wetlands with horizontal subsurface flow:a review[J].Hydrobiologia,2011,674(1):133-156.
    [52] WANG J F,SONG X S,WANG Y H,et al.Bioelectricity generation,contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J].Bioresource Technology,2017,245(8):372-378.
    [53] YANG Y,ZHAO Y Q,TANG C,et al.Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation[J].Chemical Engineering Journal,2020,392:123708.
    [54] CHEN Z,HUANG Y C,LIANG J H,et al.A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere[J].Bioresource Technology,2012,108(1):55-59.
    [55] VILLASENOR J,CAPILLA P,RODRIGO M A,et al.Operation of a horizontal subsurface flow constructed wetland:microbial fuel cell treating wastewater under different organic loading rates[J].Water Research,2013,47(17):6731-6738.
    [56] OON Y L,ONG S A,HO L N,et al.Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery[J].Bioresource Technology:Biomass,Bioenergy,Biowastes,Conversion Technologies,Biotransformations,Production Technologies,2016,203(12):190-197.
    [57] LIU F,SUN L,WAN J B,et al.Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process[J].Journal of Environmental Ences,2020,89(8):252-263.
    [58] FANG Z,CAO X,LI X X,et al.Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J].Bioresource Technology,2017,238(4):450-460.
    [59] YU B,LIU C L,WANG S Y,et al.Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature[J].Science of the Total Environment,2020,724:138017.
    [60] LI H,CAI Y,GU Z L,et al.Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J].Chemosphere,2020,248:126014.
    [61] LI J,LI H J,ZHENG J L,et al.Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities[J].Bioresource Technology,2017,233(2):1-6.
    [62] WANG J F,SONG X S,WANG Y H,et al.Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J].Science of the Total Environment,2017,607/608(6):53-62.
    [63] ROHIT R,DISHANT P,SHABNAM S,et al.Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures[J].Bioresource Technology,2019,285:121349.
    [64] WANG Q,LV R Y,RENE E R,et al.Characterization of microbial community and resistance gene (CzcA) shifts in up-flow constructed wetlands-microbial fuel cell treating Zn (Ⅱ) contaminated wastewater[J].Bioresource Technology,2020,302:122867.
    [65] AN J,KIM B,NAM J,et al.Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J].Bioresource Technology,2013,127(9):138-142.
    [66] CORBELLA C,GARFI M,PUIGAGUT J.Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence:surveying the optimal scenario for microbial fuel cell implementation[J].Science of the Total Environment,2014,470/471(9):754-758.
    [67] DOHERTY L,ZHAO Y Q,ZHAO X H,et al.Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J].Chemical Engineering Journal,2015,266(12):74-81.
    [68] XU L,ZHAO Y Q,DOHERTY L,et al.Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber[J].Scientific Reports,2016,6:26514.
    [69] WANG J F,SONG X S,WANG Y H,et al.Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell[J].Bioresource Technology,2016,221(9):697-702.
    [70] WANG J F,SONG X S,LI Q S,et al.Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI[J].Water Research,2019,150(11):340-348.
    [71] SRIVASTAVA P,DWIVEDI S,KUMAR N,et al.Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2017,244(8):1178-1182.
    [72] EMILIUS S,CEES J,DAVID P.Activated carbon mixed with marine sediment is suitable as bioanode material for spartina anglica sediment/plant microbial fuel cell:plant growth,electricity generation,and spatial microbial community diversity[J].Water,2019,11(9):1810-1832.
    [73] WANG J F,SONG X S,WANG Y H,et al.Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland[J].Ecological Engineering,2017,99(11):191-198.
    [74] HUANG S,ZHU G C,GU X.The relationship between energy production and simultaneous nitrification and denitrification via bioelectric derivation of microbial fuel cells at different anode numbers[J].Environmental Research,2020,184:109247.
    [75] XU L,ZHAO Y Q,WANG X D,et al.Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process[J].Chemical Engineering Journal,2018,344(3):105-113.
    [76] FU Y B,XU Q,ZAI X R,et al.Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output[J].Applied Surface Science,2014,289(11):472-477.
    [77] DORDIO A V,CARVALHO A J P.Organic xenobiotics removal in constructed wetlands,with emphasis on the importance of the support matrix[J].Journal of Hazardous Materials,2013,252/253(3):272-292.
    [78] SRIVASTAVA P,YADAV A K,MISHRA B K.The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J].Bioresource Technology,2015,195(5):223-230.
    [79] XU L,WANG B D,LIU X H,et al.Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland[J].Applied Energy,2018,214(1):83-91.
    [80] LIU R B,ZHAO Y Q,SIBILLE C,et al.Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption[J].Chemical Engineering Journal,2016,302(5):120-127.
    [81] XU L,ZHAO Y Q,FAN C,et al.First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring[J].Bioresource Technology,2017,243(6):846-854.
    [82] IOANNIS I,JONATHAN W,JOHN G.Effects of flow-rate,inoculum and time on the internal resistance of microbial fuel cells[J].Bioresource Technology,2010,101(10):3520-3525.
    [83] FANG Z,SONG H L,CANG N,et al.Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J].Biosensors and Bioelectronics,2015,68(12):135-141.
    [84] SONG H L,LI H,ZHANG S,et al.Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:effects of circuit operation mode and hydraulic retention time[J].Chemical Engineering Journal,2018,350(6):920-929.
    [85] ZHONG F,YU C,CHEN Y,et al.Nutrient removal process and cathodic microbial community composition in integrated vertical-flow constructed wetland-microbial fuel cells filled with different substrates[J].Frontiers in Microbiology,2020,11:1896-1896.
    [86] OON Y L,ONG S A,HO L N,et al.Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation[J].Bioresource Technology,2015,186(3):270-275.
    [87] TEOH T P,ONG S A,HO L N,et al.Up-flow constructed wetland-microbial fuel cell:influence of floating plant,aeration and circuit connection on wastewater treatment performance and bioelectricity generation[J].Journal of Water Process Engineering,2020,36:101371.
    [88] FREGUIA S,RABAEYY K,YUAN Z,et al.Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J].Water Research,2008,42(6/7):1387-1396.
    [89] LIU S T,SONG H L,WEI S Z,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2014,166(5):575-583.
    [90] FANG Z,CHENG S,CAO X,et al.Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland[J].Environmental Technology Letters,2016,38(8):1051-1060.
  • 加载中
计量
  • 文章访问数:  489
  • HTML全文浏览量:  63
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回