BIOGEOCHEMICAL CHARACTERISTICS OF NITROGEN MIGROGEN MIGRATION AND TRANSFORMATION IN SUBSURFACE FLOW BELT DRIVEN BY RIVER COLLECTION
-
摘要: 为研究傍河开采驱动下潜流带中"三氮"迁移转化规律和氧化还原分带,通过不同时期在傍河开采条件下采集潜流带土样和水样分析三氮的转化过程及特性,并结合溶解氧和氧化还原电位及硝酸根和亚硝酸根含量和优势菌来判断其迁移转化规律与机理。结果表明:河水在入渗的过程中,首先进入处于离岸-6~1.5 m处的氧化带,O2与有机物发生反应释放出CO2,随后到离岸1.5~17 m处的弱氧化环境的氧化还原过渡带,在硝化细菌和反硝化菌的作用下发生硝化反应和反硝化反应,最后到离岸17~350 m处缺氧环境的还原带中,在缺氧条件下反硝化反应。优势菌对水源地氧化还原作用分带具有响应联系特征。枯水期水位低能够更加快速降低水中溶解氧DO、氨氮、硝酸盐氮,所以枯水期的氧化还原距离短,丰水期的距离稍长。在傍河开采驱动下,水动力条件随着不同时期发生改变,河水向地下水补给过程中各方面均存在差异,而这一系列的差异影响了氮素在地下介质中的迁移转化。Abstract: In order to study the migration, transformation and REDOX zoning of tri-nitrogen in subsurface flow zone driven by riverside mining, soil samples and water samples were collected from subsurface flow zone in different periods of riverside collection to analyze the transformation process and characteristics of tri-nitrogen, and the migration and transformation law and mechanism were determined by combining dissolved oxygen, redox potential, nitrate and nitrite content and dominant bacteria. The results showed that in the process of infiltration, the river water firstly entered the oxidation zone in -6~1.5 m offshore, O2 reacted with organic matters to release CO2, then went to the oxidation-reduction transition zone of weak oxidation environment in 1.5~17 m offshore, nitration and denitrification reactions occurred under the action of nitrifying bacteria and denitrifying bacteria, and finally entered into the reduction zone of anoxic environment in 17~350 m offshore, denitrification happened under anoxic condition. The dominant bacteria had some connection and response to Redox Zoning. Low water level in dry season was conducive to reduce DO, NH3-N and NO3--N more quickly, so the REDOX distance was shorter in dry season and longer in wet season. Driven by riverside collection, hydrodynamic conditions changed with different periods, and there were differences in various aspects in the process of river recharge to groundwater, which affected the migration and transformation of nitrogen into underground media.
-
Key words:
- undercurrent belt /
- nitrogen element /
- migration /
- river collection
-
[1] BURGIN A J,HAMILTON S K.Have we overemphasized the role of denitrification in aquatic ecosystems a review of nitrate removal pathways[J].Frontiers in Ecology and the Environment,2007,5(2):89-96. [2] DUFF J H,TRISKA F J.Nitrogen biogeochemistry and surface-subsurface exchange in streams[M]//Streams and Ground Waters (Jones,J.B.and Mulholland,P.J.,Eds).Academic Press,London,2000:197-220. [3] PINAY G,BLACK V J,PLANTY-Tabacchi,et al.Geomorphic control of denitrification in large river floodplain soils[J].Biogeochemistry,2000,50:163-182. [4] PFENNING K S,MCMAHON P B.Effect of nitrate,organic carbon,and temperature on potential denitrification rates in nitrate-rich riverbed sediments[J].Journal of Hydrology,1996,187:283-295. [5] HILL A R,DEVITO K J,CAMPAGNOLO S,et al.Subsurface denitrification in a forest riparian zone:interactions between hydrology and supplies of nitrate and organic carbon[J].Biogeochemistry,2000,51:193-223. [6] RICHARD G.STOREY,D DUDLEY WILLIAMS,ROBERTA R.Nitrogen processing in the hyporheic zone of pastoral stream[J].Biogeochemistry,2004,69:285-313. [7] MERMILLOD-BLONDIN F,MAUCLAIRE L,MONTUELLE B.se of slow filtration columns to assess oxygen respiration,consumption of dissolved organic carbon,nitrogen transformations,and microbial parameters in hyporheic sediments[J].Water Research,2005,39:1687-1698. [8] PINAY G,BLACK V J,PLANTY A M,et al.Geomorphic control of denitrification in large river floodplain soils[J].Biogeochemistry,2000,50:163-182. [9] NAVEL S,SAUVAGE S,DELMOTTE S,et al.A modelling approach to quantify the influence of fine sediment deposition on biogeochemical processes occurring in the hyporheic zone[J].Annales de Limnologie-International Journal of Limnolo,2012,48(3):279-287. [10] STOREY R,WILLIAMS D D,FULTHORPE R R.Nitrogen processing in the hyporheic zone of a pastoral stream[J].Biochemistry,2004,69(3):285-313. [11] MERMILLOD-BLONDIN F,MAUCLAIRE L,MONTUELLE B.Use of slow filtration columns to assess oxygen respiration,consumption of dissolved organic carbon,nitrogen transformations,and microbial parameters in hyporheic sediments[J].Water Research,2005,39(9):1687-1698. [12] PARK J,A R,SANFORD,CRAIG M,BERHKE.Microbial activity and chemical weathering in the Middendorf aquifer,South Carolina[J].Chemical Geology,2009,258:232-241. [13] BOURKE S A,COOK P G,SHANAFIELD M,et al.Characterisation of hyporheic exchange in a losing stream using radon-222[J].Journal of Hydrology,2014,519:94-105. [14] BURGIN A J,HAMILTON S K.Have we overemphasized the role of denitrification in aquatic ecosystems a review of nitrate removal pathways[J].Frontiers in Ecology and the Environment,2007,5(2):89-96. [15] TONINA D,BUFFINGTON J M.Hyporheic exchange in mountain rivers I:mechanics and environmental effects[J].Geography Compass,2009,3(3):1063-1086. [16] TONINA D,BUFFINGTON J M.Hyporheic exchange in gravel bed rivers with pool-riffle morphology:laboratory experiments and three-dimensional modeling[J].Water Resources Research,2007,43(1):1-16. [17] BOULTON A J,DATRY T,KASAHARA T,et al.Ecology and management of the hyporheic zone:stream-groundwater interactions of running waters and their floodplains[J].Journal of the North American Benthological Society,2010,29(1):26-40. [18] MARZADRI A,TONINA D,MCKEAN J A,et al.Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams[J].Journal of Hydrology,2014,519:1997-2011. [19] MARZADRI A,TONINA D,BELLIN A.Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime:implication for dissolved oxygen dynamics[J].Journal of Hydrology,2013,507:241-248. [20] ZARNETSKE J P,HAGGERTYR,WONDZELL S M,et al.Labile dissolved organic carbon supply limits hyporheic denitrification[J].Journal of Geophysical Research:Biogeosciences,2011,116(4):4036-4048. [21] STONEDAHL S H,HARVEY J W,PACKMAN A I.Interactions between hyporheic flow produced by stream meanders,bars,and dunes[J].Water Resources Research,2013,49(9):25-36. [22] BOURG ACM,BERTIN C.Biogeochemical processes during the infiltration of river water into an alluvial aquifer[J].Environ Sci Technol,1993,27:661-666. [23] FARNSWORTH C E,HERING J G.Inorganic Geochemistry and Redox Dynamics in Bank Filtration Settings[J].Environmental Science Technology,2011,45(12):5079-5087. [24] 廖资生,林学钰,石钦周,等,黄河下游傍河开采地下水的试验研究):以郑州北郊黄河滩地为例[J].2004,中国科学(E辑)技术科学,34(1):13-22. [25] SOPHOCLEOUS M.Interactions between groundwater and surface water:the state of the science[J].Hydrogeology Journal,2002,10:52-67. [26] 黄瑞华,吴耀国,杨炳超.氨氮在垂向河床渗滤系统中的环境行为[J].地球科学与环境学报,2006,1:92-95. [27] 李志萍,张金炳,屈吉鸿,等.污染河水中氨氮对浅层地下水的影响[J].地球科学,2004,29(3):363-368. [28] 杨维,王恩德,李勇,等.浑河冲洪积扇中下游地下水中氮转化与水文地球化学特征的研究[J].水文地质工程地质,2005,32(202):39-41. [29] 徐德星,海热提,郑丙辉,等.三峡入库河流大宁河回水区消落带土壤氨氮释放动力学研究[J].环境科学与技术,2010,33(10):49-52. [30] 李翔,席北斗.水位波动带氮素迁移转化规律[J].环境工程学报,2013(7):4703-4708. [31] 董德明,宋兴.有机污染物和氨氮在辽河源头区典型水环境中迁移转化规律的模拟研究[D].长春:吉林大学,2012(6):25-27. [32] ML W,MQ N,XC W,et al.Effect of Mn2+ on pyrene degra-dation by Flavobacterium sp.FCN[J].Environmental Sci,2008,7:1982-1985. [33] TX H,JP N,ZL L,et al.Heterotrophic Nitrification and Aer-obic DE nitrification of the Hypothermia Aerobic Denitrification Ba-cterium:arthrobacter arilaitensis[J].Environmental Sci,2016,37(3):1082-1088.
点击查看大图
计量
- 文章访问数: 199
- HTML全文浏览量: 22
- PDF下载量: 4
- 被引次数: 0