HYDROCHEMICAL CHARACTERISTICS AND GENESIS OF GROUNDWATER IN SOUTHERN SUBURB OF BEIJING PLAIN
-
摘要: 地下水是旱区重要的供水水源,水化学组成是决定地下水可利用性的关键因素之一。以北京南郊平原为研究对象,通过系统调查浅层地下水和深层地下水化学组成,利用水文地球化学图解、多元统计及空间插值分析等多种方法,探讨了快速城镇化及剧烈农业活动条件下旱区地下水化学空间演变特征及其成因机制。结果表明:研究区地下水均为弱碱性低矿化水,水化学类型主要为HCO3-Ca和Cl-Mg·Ca,并有少量HCO3-Na·Ca型。浅层地下水和深层地下水均存在不同程度的硝酸盐浓度偏高现象,二者水化学演变与NO3-浓度升高密切相关,随着NO3-浓度升高优势阴离子逐渐由HCO3-转变为SO42-、Cl-。浅层地下水和深层地下水化学组成受自然因素和人为因素双重作用控制,含水层结构控制着水化学主导因素的空间分布,人为因素主导的水化学区主要分布在单一含水层结构的西北部城镇地区,而自然因素主导的水化学区主要分布于多层含水结构的东南部农业区。水化学组分的自然来源机制包括岩石风化溶解和阳离子交替吸附作用等;人为来源主要为城镇地区地表污染物输入,再生水灌溉对水质影响较小。Abstract: Groundwater is an important water resource for water supply, and the hydrochemistry is one of the key factors determining its availability. In this study, the southern near-suburb plain of Beijing was taken as an example, multiple approaches including hydrogeochemical diagrams, multiple statistics analysis and spatial interpolation model were performed, to reveal groundwater chemistry and its genesis in arid and semiarid regions undergone rapid urbanization and densely agricultural practices. The results demonstrated that groundwater was generally slightly alkaline fresh water in the study area. The hydrochemical type of groundwater were dominantly HCO3-Ca and Cl-Mg·Ca type, along with a few of HCO3-Na·Ca type. Elevation of NO3- concentrations were observed in both shallow and deep aquifers. The hydrogeochemical faces evolution of shallow and deep groundwater was significantly related to the elevated NO3- concentrations. The dominant anions evolved gradually from HCO3- to SO42- and Cl- with the increase of NO3- concentration. Hydrogeochemical components of shallow and deep groundwater were controlled by both natural and anthropogenic factors. The spatial distribution of dominant controlling factors of groundwater chemistry was governed by the aquifer structures. The hydrochemical compositions of groundwater in the northwestern urban areas with single aquifer structure were dominantly controlled by anthropogenic factors, while that in the southeastern agricultural areas with multiple aquifer structure were mainly governed by natural factors. The natural factors controlling groundwater chemistry included rock weathering, minerals dissolution and ions exchange. Ground surface pollutants input was the main anthropogenic factor controlling groundwater chemistry. While the reclaimed water used for agricultural irrigation was found to have little impact on groundwater chemical evolution.
-
Key words:
- groundwater /
- hydrochemistry /
- nitrate /
- genesis analysis /
- Beijing Plain
-
[1] 王雨山,李戍,李海学,等.海原盆地地下水咸化特征和控制因素[J].水文地质工程地质,2019,46(4):10-17. [2] DÍAZ-ALCAIDE S,MARTINEZ-SANTOS P.Review:Advances in groundwater potential mapping[J].Hydrogeology Journal,2019,7(27):2307-2324. [3] ABBASNIA A,YOUSEFI N,MAHVI A H,et al.Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes:case study of Sistan and Baluchistan province (Iran)[J].Human & Ecological Risk Assessment,2018,4(28):988-1005. [4] 雷米,周金龙,范薇,等.新疆阿克苏平原区地下水水化学演化特征[J].地球与环境,2020,48(5):602-611. [5] 郝艳茹,王鹏,张明珠,等.广花盆地地下水化学特征及其演化分析[J].生态环境学报,2020,29(2):337-344. [6] 吕晓立,刘景涛,韩占涛,等.城镇化进程中新疆塔城盆地浅层地下水化学演变特征及成因[J].环境科学,2020,41(3):1197-1206. [7] 朱涛,王润泽,王宗周,等.皂河-渭河交汇区三氮的行为特征研究[J].环境工程,2020,38(9):1-16. [8] 刘昭,周宏,刘伟,等.清江流域地下水重金属含量特征及健康风险初步评价[J].环境工程,39(5):1-10. [9] 马闯,杨军,雷梅,等.北京市再生水灌溉对地下水的重金属污染风险[J].地理研究,2012,31(12):2250-2258. [10] 张明珠,朱嵩,曾慧,等.帽峰山地区地下水化学时空分布特征分析与污染评价[J].环境工程,2018,36(10):135-139. [11] 郇环,王金生,翟远征,等.北京平原区永定河冲洪积扇地下水水化学特征与演化规律[J].地球学报,2011,32(3):357-366. [12] 鲁春霞,冯跃,孙艳芝,等.北京城市扩张过程中的供水格局演变[J].资源科学,2015,37(6):1115-1123. [13] 肖勇,邵景力,顾晓敏,等.北京昌平平原区地下水污染特征[J].南水北调与水利科技,2015,13(2):252-256. [14] 李露,秦大军,郭艺,等.北京西山岩溶水中硝酸盐来源及迁移特征[J].水文地质工程地质,2019,46(4):73-80. [15] 丁际豫,徐鹏飞,陈建平.北京地区地下水盐分迁移变化规律研究[J].环境科学与技术,2017,40(增刊2):59-64. [16] 蓝天杉,苗晋杰,白耀楠,等.北京通州区潜水水化学特征及形成分析[J].节水灌溉,2018(12):70-76. [17] ZHAI Y Z,LEI Y,ZHOU J,et al.The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District,Beijing,China[J].Environmental Monitoring & Assessment,2015,187(2):43. [18] 刘克.北京市典型河湖再生水补水生态环境效应研究[D].北京:首都师范大学,2012. [19] 赵霏,黄迪,郭逍宇,等.北京市北运河水系河道水质变化及其对河岸带土地利用的响应[J].湿地科学,2014,12(3):380-387. [20] 何江涛,金爱芳,陈素暖,等.北京东南郊再生水灌区土壤PAHs污染特征[J].农业环境科学学报,2010,29(4):666-673. [21] 王亚俊,宋献方,马英,等.北京东南郊再生水灌区不同水体氢氧同位素特征及成因[J].地理研究,2017,36(2):361-372. [22] YIN S Y,WU W Y,LIU H L,et al.The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area[J].Journal of Contaminant Hydrology,2016,193:1-9. [23] 郭甜甜,张晗,安文刚,等.再生水地下回灌过程中溶解性有机物的组成结构变化及其特性[J].环境工程,2020,38(6):126-131. [24] BAO Z,WU W Y,LIU H L,et al.Geostatistical analyses of spatial distribution and origin of soil nutrients in long-term wastewater-irrigated area in Beijing,China[J].Acta Agriculturae Scandinavica,2014,64(3):235-243. [25] WANG S Y,WU W Y,LIU F,et al.Spatial distribution and migration of nonylphenol in groundwater following long-term wastewater irrigation[J].Journal of Contaminant Hydrology,2015,177/178:85-92. [26] 尹世洋.北京东南郊再生水灌溉对地下水影响的研究[D].北京:中国地质大学(北京),2018. [27] 王新娟,李世君,周俊,等.北京大兴区第四系地下水氟分布特征及成因分析[J].南水北调与水利科技,2013,11(2):52-57. [28] 李世君,王新娟,周俊,等.北京大兴区第四系高氟地下水分布规律研究[J].现代地质,2012,26(2):407-414. [29] GIBBS R J.Mechanisms controlling world water chemistry[J].Science,1970,170(3962):1088-1090. [30] 侯庆秋,董少刚,张旻玮.内蒙古四子王旗浅层地下水水化学特征及其成因[J].干旱区资源与环境,2020,34(4):116-121. [31] YIN S,XIAO Y,HAN P,et al.Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China[J].Water,2020,12(4):1137. 期刊类型引用(29)
1. 李金,仇璐,刘锐,李军,李瀚屹,颜兵,何江,梁贤金,易彪. 垃圾渗滤液处理系统方案评价模型研究. 工业水处理. 2025(03): 121-128 . 百度学术
2. 常雨芳,胡宇博,余文锦,周菲菲,黄文聪. 垃圾渗滤液污水处理设备的臭氧投加复合抗扰控制. 控制工程. 2024(03): 385-391 . 百度学术
3. 何京钟,孙竟,刘羿,柴玉峰,彭春. 多级A/O-MBR工艺在垃圾渗滤液应急处理中的应用. 中国给水排水. 2024(06): 79-86 . 百度学术
4. 李明德. 某城市生活垃圾焚烧电厂渗滤液处理工程实例. 绿色科技. 2024(04): 209-213 . 百度学术
5. 许明俊,向赠烨. 生活垃圾焚烧发电厂垃圾渗滤液与餐厨废水协同处理设计及应用. 广东化工. 2024(09): 142-145 . 百度学术
6. 龚晓露,王俊杰. 溶解氧和碳源对填埋污泥脱水液脱氮效果的影响. 环境科学与技术. 2024(S2): 147-151 . 百度学术
7. 陈斌,韩粒,黄金琼. 生活垃圾焚烧发电厂垃圾渗滤液高回收率设计及应用. 广东化工. 2023(11): 141-143 . 百度学术
8. 张燕燕,郑志宏,刘红亮,付曼琴,李蕾,彭绪亚. 中国垃圾渗滤液产生现状及处理展望. 重庆大学学报. 2023(06): 76-88 . 百度学术
9. 陈客步. 徐州市生活垃圾填埋场地块修复方案. 能源技术与管理. 2023(06): 142-144+155 . 百度学术
10. 左壮,程李秋,张琛玥,王元月,杨晓冬,袁硕. 污泥热水解厌氧消化液处理技术进展. 给水排水. 2023(S2): 166-176 . 百度学术
11. 王海棠. 氨吹脱结晶在垃圾渗滤液处理中的工程研究. 现代化工. 2022(02): 15-18 . 百度学术
12. 冯建武,汤红妍,浮锟,崔一鸣. Fenton预处理对渗滤液中有机成份的影响研究. 广州化工. 2022(09): 60-63 . 百度学术
13. 牧兰. 探究新时期垃圾渗滤液浓缩液处理技术. 皮革制作与环保科技. 2022(17): 95-97 . 百度学术
14. 刘滨,刘伟,刘定文. 基于电导率控制的污水渗滤液处理方法研究. 环境科学与管理. 2021(01): 77-81 . 百度学术
15. 陶海祥,毛兵,江海云,吴小亮. Ru/TiO_2湿式催化氧化降解垃圾渗滤液膜浓缩液. 工业水处理. 2021(09): 111-116 . 百度学术
16. 肖羽堂,吴晓慧,王冠平,石伟,孙临泉,陈艳芳. 垃圾渗滤液高级氧化及其组合工艺深度处理研究进展. 水处理技术. 2020(02): 8-12 . 百度学术
17. 吴晓慧,肖羽堂,孙临泉,陈艳芳,缪爱纯,王冠平,石伟. 臭氧催化氧化耦合MBR深度处理垃圾渗滤液试验. 工业水处理. 2020(03): 78-80+84 . 百度学术
18. 王慧雅. g-C_3N_4/TiO_2/PVDF复合膜构建的MBR+双膜法在垃圾渗滤液深度处理中的应用研究. 现代化工. 2020(05): 159-164 . 百度学术
19. 仇庆春,高碧霄,潘杨,王静. 苏州某垃圾渗滤液处理工艺优化与实践. 苏州科技大学学报(工程技术版). 2020(01): 45-49 . 百度学术
20. 杨姝君,张辰,贺骏,熊建英,李雪亭,黄孝文. 垃圾渗滤液“纳滤+纳滤浓缩液3级减量”技术的工程应用. 环境工程. 2020(06): 81-87+114 . 本站查看
21. 刘建伟,康心悦,岳鹏,陈雪威,田洪钰. 城市生活垃圾综合处理厂渗滤液全量化处理工程设计. 中国给水排水. 2020(10): 70-75 . 百度学术
22. 戚二兵,黄亚继,袁琦,胡华军,樊聪慧,曹彦彦,丁守一. 石灰混凝-浸没蒸发协同处理垃圾渗滤液纳滤膜浓缩液. 环境工程. 2020(12): 54-58+77 . 本站查看
23. 施燕,张万筠,杨婉玲,李晶,林岩,尹南竹. 垃圾渗滤液污染物含量及分布规律研究. 辽宁化工. 2019(03): 201-204 . 百度学术
24. 郑忆枫. 垃圾渗滤液处理难点与应对方式研究. 环境与发展. 2019(03): 69-70 . 百度学术
25. 张超,尚润东,刘宇璇,杨国庆,李璐,施磊,靳永胜. 菌株SDB1-2的筛选及其对垃圾渗滤液处理的应用. 北京农学院学报. 2019(02): 1-4 . 百度学术
26. 万金保,余晓玲,吴永明,邓觅. UASB-氨吹脱-氧化沟-反渗透处理垃圾渗滤液. 水处理技术. 2019(05): 135-138 . 百度学术
27. 胡云飞,裴建川,马勤,王洁屏. 短程硝化在垃圾渗滤液处理工程中的应用. 环境工程学报. 2019(06): 1463-1472 . 百度学术
28. 柴健. 氨吹脱+外置式MBR+DTRO工艺处理垃圾渗滤液工程应用. 水处理技术. 2019(09): 137-140 . 百度学术
29. 张晓杰. 厌氧+MBR+NF+RO工艺与两级DTRO工艺处理垃圾渗滤液的对比分析. 水处理技术. 2019(09): 126-129+132 . 百度学术
其他类型引用(24)
-

计量
- 文章访问数: 236
- HTML全文浏览量: 33
- PDF下载量: 9
- 被引次数: 53