ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE
-
摘要: 针对华东某多环芳烃类污染场地,通过应用原位电热脱附修复技术,系统分析了运行过程中加热温度、加热时间、气相抽提密度等关键参数的变化规律,并对修复效果、抽提气体浓度、能耗等运行参数进行分析。结果表明:原位电热脱附对多环芳烃类污染物具有良好的去除效果,加热运行250 d后,场地土壤温度均可达到300 ℃以上,污染物去除率达到99.99%以上,修复后土壤污染物浓度值低于修复目标值的要求。土壤加热温度、加热时间、气相抽提密度是影响原位电热脱附修复效果的关键因素,进而提出了降低修复成本的施工经验,为高温原位电热脱附的推广和工程化应用提供借鉴。Abstract: In this paper, the in-situ electrothermal desorption remediation technology was applied to a polycyclic aromatic hydrocarbon (PAHs) contaminated site in East China. The changes of key parameters such as heating temperature, heating time and gas phase extraction density during operation were systematically analyzed, and the operating parameters such as the remediation effect, extraction gas concentration and energy consumption were also analyzed. The results showed that the in situ electrothermal desorption had a good removal effect on PAHs. After 250 days of heating, the soil temperature of the site reached above 300 ℃, and the pollutant removal rate reached more than 99.99%. The concentration of soil pollutants after remediation was lower than the requirements of the target value of remediation. The heating temperature, heating time and gas phase extraction density of soil were the key factors affecting the effect of in-situ electrothermal desorption remediation, and the construction experience of reducing the cost of remediation was put forward, which could provide references for the promotion and engineering application of high-temperature in-situ electrothermal desorption.
-
[1] 张学良,李群,周艳,等.某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J].环境科学学报,2018,38(7):2868-2875. [2] 冉宗信,陈靖宇,王雅婷,等.典型工业区土壤多环芳烃污染特征及影响因素[J].环境科学,2019,40(10):4594-4603. [3] 沈源源,滕应,骆永明,等.几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J].土壤,2011,43(2):253-257. [4] 蔡月华,张丹,姜林,等.化学预氧化耦合生物降解技术修复多环芳烃污染土壤研究进展[J].环境工程,2014,32(5):150-154. [5] CHEN Y,ZHAO R Z,XUE J,et al.Generation and distribution of PAHs in the process of medical waste incineration[J].Waste Management,2013,33(5):1165-1173. [6] 朱煜.异位化学氧化技术处理多环芳烃污染土壤的工程应用研究[J].广东化工,2016,43(13):308-309. [7] 付奕舒.多环芳烃污染土壤化学氧化修复及案例研究[J].绿色科技,2019(4):88-89. [8] 戚惠民.异位类Fenton化学氧化在多环芳烃污染场地修复中的应用[J].环境工程学报,2018,12(11):3260-3267. [9] 田垚.电阻加热耦合化学氧化对场地多环芳烃污染土壤的修复效果研究[D].太原:山西大学,2020. [10] BIACHE C,MANSUYHUAUIT L,FAURE P,et a1.Effects of thermal desorption the composition of two coking plant soil:Impact on solvent extnactable organic compounds and metal bioavailability[J].Environmental Pollution,2008,156(3):671-677. [11] 陶欢,廖晓勇,阎秀兰,等.应用多属性决策分析法筛选污染场地土壤修复技术[J].环境工程学报,2017,11(8):4850-4860. [12] 刘惠.污染土壤热脱附技术的应用与发展趋势[J].环境与可持续发展,2019(4):144-148. [13] 康绍果,李书鹏,范云.污染地块原位加热处理技术研究现状与发展趋势[J].化工进展,2017,36(7):2621-2631. [14] U S Army Corps of Engineers Design:In Situ Thermal Remediation[R].Washington:Department of the Army,2009. [15] 蒋村,孟宪荣,施维林,等.氯苯污染土壤低温原位热脱附修复[J].环境工程学报,2019,7(13):1720-1726. [16] HEGELE P R,MUMFORD K G.Ga S production and transport during bench-scale electrical resistance heating of water and trichloroethene[J].Journal of Contaminant Hydrology,2014,165:24-36. [17] HIESTER U,MULLER M,KOSCHITZKY H,et a1.In situ thermal(ISTT) for source zone remediation of soil and groundwater[J].British Medical Journal,2013,31:482-484. [18] 李书鹏,焦文涛,李鸿炫.燃气热脱附技术修复有机污染场地研究与应用进展[J].环境工程学报,2019,13(9):2037-2048. [19] 迟克宇,李传维,籍龙杰,等.原位电热脱附技术在某有机污染场地修复中的应用效果[J].环境工程学报,2019,13(9):2049-2059. [20] HERON G,PARKER K,GALLIGAN J,et al.Thermal treatment of eight CVOC source zones to near nondetect concenations[J].Groundwater Monitoringand Remediation,2009,29(3):56-65. [21] 赵涛,马刚平,周宇,等.多环芳烃类污染土壤热脱附修复技术应用研究[J].环境工程,2017,35(11):178-181. [22] 王瑛,李扬,黄启飞,等.温度和停留时间对DDT污染土壤热脱附效果的影响[J].环境工程,2012,30(1):116-120. [23] ZHAO C,MUMFORD K G,KUPPER B H.Labomtory study of nonaqueo-us phase liquid and water co-boiling during themal treatment[J].Journal of Conta-minant Hydrology,2014,164:49-58. [24] 王慧玲,王峰,张学平,等.气相抽提法去除土壤中挥发性有机污染物现场试验研究[J].科学技术与工程,2015,10(15):238-242.
点击查看大图
计量
- 文章访问数: 227
- HTML全文浏览量: 52
- PDF下载量: 10
- 被引次数: 0