RESEARCH PROGRESS OF PREPARATION OF CHARRING MATERIALS AND THEIR APPLICATION IN SOIL THERMAL CHARRING
-
摘要: 焦炭、活性炭和生物炭等传统炭化材料的炭化过程和机制已经较为熟悉;同时,土壤热处理过程中的发生的炭化反应对土壤再利用特性有重要影响,但是目前受到关注较少、机制不明。探讨了炭化材料的制备工艺及应用、炭化反应历程和炭化产物的物化特性表征方法、炭化反应过程的影响因素(炭化方式、参数、矿物质及添加剂等)及其在土壤热处理炭化研究中的指导作用,最后提出了土壤热处理炭化研究中应重点关注方向。分析结果表明:炭化表征方法可用于分析土壤有机污染物炭化行为及鉴定炭化产物;炭化产物的产率和性能与多种因素有关,可用于分析土壤热处理条件对炭化行为的影响特性。Abstract: The charring process and mechanism of traditional charring materials such as coke, activated carbon and biochar have been studied thoroughly. Charring reaction during soil thermal treatment process has an important influence on soil reuse. However, little attention has been paid on and its mechanism is unclear, so it is urgent to strengthen the related research. In order to refer to the achievements and experience of the traditional charring process, this paper discussed the preparation process and application of charring materials, the characterization methods of charring reaction process and the physicochemical properties of charring products, and the influencing factors of charring reaction process (charring methods, parameters, minerals and additives, etc.), as well as the guidance for the study on soil thermal treatment charring. Finally, several aspects were put forward during soil thermal treatment charring. The results showed that the charring characterization method could be used to analyse the charring behaviors of soil organic pollutants and identify the charring products. The yield and properties of charring products were related to many factors, and could be used to analyse the effects of soil thermal treatment conditions on charring behaviors.
-
[1] O'BRIEN P L,DESUTTER T M,CASEY F X,et al.Thermal remediation alters soil properties:a review[J].Journal of Environmental Management,2018,206:826-835. [2] 桑义敏,余望,籍龙杰,等.土壤直接热脱附过程中二噁英生成特性和抑制机理研究进展[J].环境工程学报,2020,14(11):2912-2923. [3] VIDONISH J E,ZYGOURAKIS K,MASIELLO C A,et al.Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J].Environmental Science & Technology,2016,50(5):2498-2506. [4] REN J Q,SONG X,DING D.Sustainable remediation of dieselcontaminated soil by low temperature thermal treatment:improved energy efficiency and soil reusability[J].Chemosphere,2020,241:124952. [5] HE L,SANG Y M,YU W,et al.Polymerization and carbonization behaviors of 2-methylnaphthalene in contaminated soil during thermal desorption[J].Water,Air, & Soil Pollution,2020,231(10):505. [6] MOHANTY A,CHAKLADAR S,MALLICK S,et al.Structural characterization of coking component of an Indian coking coal[J].Fuel,2019,249:411-417. [7] 杨俊和,钱湛芬,杜鹤桂.矿物质对焦炭显微结构作用研究[J].上海应用技术学院学报(自然科学版),2001(1):7-13. [8] 仝配配,王子军.石油加工过程中焦炭形成的原因、类型及影响因素[J].化工进展,2016,35(增刊1):101-108. [9] 王茂章,李峰.由煤或焦炭制备纳米碳质材料的新进展[J].新型炭材料,2005(1):71-82. [10] 马元庚.木炭的特性及其新的利用[J].林化科技通讯,1987(2):15-17. [11] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1411-1421. [12] 任少云,程红丹,张伟平,等.生物炭制备方法的研究进展[J].高师理科学刊,2017,37(8):74-76. [13] 孔丝纺,姚兴成,张江勇,等.生物质炭的特性及其应用的研究进展[J].生态环境学报,2015,24(4):716-723. [14] 赵子奇,单荣,黄玲巍,等.生物炭在环境污染治理中的应用[J].黑龙江科学,2018,9(10):16-17. [15] MANYÀJ J.Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs[J].Environmental Science & Technology,2012,46(15):7939-7954. [16] 米铁,胡叶立,余新明.活性炭制备及其应用进展[J].江汉大学学报(自然科学版),2013,41(6):5-12. [17] 孙龙梅,张丽平,薛建华,等.活性炭制备方法及应用的研究进展[J].化学与生物工程,2016,33(3):5-8. [18] 耿莉莉,张宏喜,李学琴,等.生物质活性炭的制备研究进展[J].广东化工,2014,41(12):102-103. [19] 加璐,程代云.制备活性炭的资源开发[J].新型碳材料,1994(4):15-20. [20] 李赓,汪丽.生物质活性炭的制备与应用[J].安徽农学通报,2015,21(23):28-79. [21] LI D C,JIANG H.The thermochemical conversion of nonlignocellulosic biomass to form biochar:a review on characterizations and mechanism elucidation[J].Bioresource Technology,2017,246:57-68. [22] 许细薇,蒋恩臣,李治宇,等.毛竹热解炭化演化过程的研究[J].可再生能源,2018,36(12):1758-1763. [23] 刘雪梅,马闯,吴凡,等.甘蔗渣生物质炭表征及对废水中Cr(Ⅵ)的吸附特性[J].江苏农业科学,2019,47(16):312-316. [24] LI D C,XU W F,MU Y,et al.Remediation of petroleumcontaminated soil and simultaneous recovery of oil by fast pyrolysis[J].Environmental Science & Technology,2018,52(9):5330-5338. [25] ABRAHAMSON J P,WINCEK R T,ESER S.Scheme for hydrotreatment of fluid catalytic cracking decant oil with reduced hydrogen consumption and high needle coke yield upon carbonization[J].Energy & Fuels,2016,30(10):8150-8155. [26] LOU B,LIU D,DUAN Y,et al.Structural modification of petroleum pitch induced by oxidation treatment and its relevance to carbonization behaviors[J].Energy & Fuels,2017,31(9):9052-9066. [27] 汪君,时澜,高英,等.葡萄糖水热过程中焦炭结构演变特性[J].农业工程学报,2013,29(7):191-198. [28] BELHACHEMI M,KHIARI B,JEGUIRIM M,et al.Characterization of biomass-derived chars[M].Elsevier,2019:69-108. [29] LIU D,ZHANG X L,LI G Y,et al.Comparative study on the coking characteristics of two low-asphaltene heavy oils and their main fractions[J].Journal of Petroleum Science and Engineering,2020,184:106500. [30] SANAPUR G,KUMAR A,MONDAL A,et al.Thermal desorption and characterization of carbonaceous deposits in Mo/HZSM-5 catalyst[J].Journal of Analytical and Applied Pyrolysis,2019,138:22-28. [31] KIERSCH K,KRUSE J,REGIER T Z,et al.Temperature resolved alteration of soil organic matter composition during laboratory heating as revealed by C and N XANES spectroscopy and Py-FIMS[J].Thermochimica Acta,2012,537:36-43. [32] BEN TAYEB K,HAMIEH S,CANAFF C,et al.The radical internal coke structure as a fingerprint of the zeolite framework[J].Microporous and Mesoporous Materials,2019,289:109617. [33] 刘标,董亚斌,何涛,等.竹材热解过程中焦炭组分的变化规律[J].农业工程学报,2016,32(10):232-239. [34] LEE T,NAM I,KIM J,et al.The enhanced thermolysis of heavy oil contaminated soil using CO2 for soil remediation and energy recovery[J].Journal of CO2Utilization,2018,28:367-373. [35] VIDONISH J E,Alvarez P J,ZYGOURAKIS K.Pyrolytic remediation of oil-contaminated soils:reaction mechanisms,soil changes,and implications for treated soil fertility[J].Industrial & Engineering Chemistry Research,2018,57(10):3489-3500. [36] STEINBEISS S,GLEIXNER G,ANTONIETTI M.Effect of biochar amendment on soil carbon balance and soil microbial activity[J].Soil Biology and Biochemistry,2009,41(6):1301-1310. [37] RODRI·GUEZ Correa C,STOLLOVSKY M,HEHR T,et al.Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses[J].ACS Sustainable Chemistry & Engineering,2017,5(9):8222-8233. [38] BREULMANN M,VAN AFFERDEN M,MÜLLER R A,et al.Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration[J].Journal of Analytical and Applied Pyrolysis,2017,124:256-265. [39] GRONWALD M,DON A,TIEMEYER B,et al.Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils[J].Soil,2015,1(1):475-489. [40] 徐远俊.矿物对生物质炭化过程的影响研究[D].长春:吉林大学,2018. [41] 郑庆福,王永和,孙月光,等.不同物料和炭化方式制备生物炭结构性质的FTIR研究[J].光谱学与光谱分析,2014,34(4):962-966. [42] ADOLFSSON K H,LIN C,HAKKARAINEN M.Microwave assisted hydrothermal carbonization and solid state postmodification of carbonized polypropylene[J].ACS Sustainable Chemistry & Engineering,2018,6(8):11105-11114. [43] 涂建华,张利波,彭金辉,等.炭化温度对木质陶瓷性能和结构的影响[J].材料热处理学报,2006(3):10-15. [44] 黄彪,陈学榕,江茂生,等.炭化温度对炭化物微观结构影响的研究[J].林产化学与工业,2006(1):70-74. [45] 朱伯铨,魏国平,李享成,等.炭化温度对掺杂改性树脂炭结构及其抗氧化性能的影响[J].硅酸盐学报,2014,42(6):773-778. [46] 梁桓,索全义,侯建伟,等.不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性[J].土壤,2015,47(5):886-891. [47] 张晓帆,于晓娜,周涵君,等.炭化温度对小麦秸秆炭化产率及理化特性的影响[J].华北农学报,2017,32(4):201-207. [48] BERTERO M,de la PUENTE G,SEDRAN U.Effect of pyrolysis temperature and thermal conditioning on the coke-forming potential of bio-oils[J].Energy & Fuels,2011,25(3):1267-1275. [49] ZHAO Y X,WEI F,YU Y.Effects of reaction time and temperature on carbonization in asphaltene pyrolysis[J].Journal of Petroleum Science and Engineering,2010,74(1/2):20-25. [50] GHOLIZADEH M,GUNAWAN R,HU X,et al.Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor[J].Fuel Processing Technology,2016,148:175-183. [51] 苏鑫,李玉梅,谷永建.小麦炭化过程中质量和颜色变化的实验模拟[J].中国科学院大学学报,2019,36(3):417-424. [52] 张守玉,吕俊复,岳光溪,等.煤种及炭化条件对活性焦表面化学性质的影响[J].化学工程,2004,32(5):39-43. [53] PENG C,ZHAI Y B,ZHU Y,et al.Production of char from sewage sludge employing hydrothermal carbonization:char properties,combustion behavior and thermal characteristics[J].Fuel,2016,176:110-118. [54] NA W,Shu-quan Z,MO C.Preparation and performance study on lignite briquette coke,2009[C]//IEEE,2009. [55] WU J F,LIU Q Y,WANG R X,et al.Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal[J].Fuel Processing Technology,2017,155:68-73. [56] ZHANG Y,KAJITANI S,ASHIZAWA M,et al.Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace[J].Fuel,2010,89(2):302-309. [57] 黄彪,高尚愚.木材炭化机理的研究——炭化方法和炭化条件对杉木间伐材炭化物物性的影响[J].林产化学与工业,2005(增刊1):95-98. [58] XIONG Z,SYED-HASSAN S S A,XU J,et al.Evolution of coke structures during the pyrolysis of bio-oil at various temperatures and heating rates[J].Journal of Analytical and Applied Pyrolysis,2018,134:336-342. [59] 范方宇.玉米秸秆水热炭化和热解法制备生物炭研究[D].合肥:合肥工业大学,2017. [60] 卢洪波,戴惠玉,马玉鑫.生物质三组分燃烧特性及动力学分析[J].农业工程学报,2012,28(17):186-191. [61] 宁平,杨月红,彭金辉,等.椰壳热解炭化热分析研究[J].林产化学与工业,2006(1):49-52. [62] 符朝旭,文海花,杨彩云,等.炭化压力对编织C/C复合材料致密过程及结构的影响[J].装备环境工程,2019,16(5):96-100. [63] TZENG S,PAN J.Oxidative stabilization of petroleum pitch at high pressure and its effects on the microstructure and carbon yield after carbonization/graphitization[J].Materials Chemistry and Physics,2002,74(2):214-221. [64] WHITTY K,KULLBERG M,SORVARI V,et al.Influence of pressure on pyrolysis of black liquor:2.Char yields and component release[J].Bioresource Technology,2008,99(3):671-679. [65] REMMLER M,KOPINKE F.Thermal conversion of hydrocarbons on solid matrices[J].Thermochimica Acta,1995,263:113-121. [66] 杨广宇.蒙脱石与羟丙基甲基纤维素在炭化过程中的相互影响研究[D].长春:吉林大学,2017. [67] 顾博文.矿物质对生物炭形成过程中碳保留及碳稳定性的影响[D].上海:上海交通大学,2017. [68] VERKOCZY B.Factors affecting coking in heavy oil cores,oils and SARA fractions under thermal stress[J].Journal of Canadian Petroleum Technology,1993,32(7):25-33. [69] RANJBAR M.Influence of reservoir rock composition on crude oil pyrolysis and combustion[J].Journal of Analytical and Applied Pyrolysis,1993,27(1):87-95. [70] EL-Hendawy A A.Variation in the FTIR spectra of a biomass under impregnation,carbonization and oxidation conditions[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):159-166. [71] 左宋林,江小华.磷酸催化竹材炭化的FT-IR分析[J].林产化学与工业,2005(4):21-25. [72] 左秀凤,朱永义.氯化锌活化稻壳制备活性炭的研究[J].粮食与饲料工业,2005(12):5-7. [73] 刘项,徐龙君.利用废次烟叶渣制备活性炭的研究[J].煤炭转化,2004(1):64-66. [74] 林启模,黄碧中,胡淑宜.木屑添加磷酸与氯化锌热解的DTATG曲线比较研究[J].林业科学,2004(1):142-147. [75] WIKBERG H,OHRA-AHO T,PILEIDIS F,et al.Structural and morphological changes in kraft lignin during hydrothermal carbonization[J].ACS Sustainable Chemistry & Engineering,2015,3(11):2737-2745. [76] LIU Y Q,ZHANG Q,WU B,et al.Hematite-facilitated pyrolysis:an innovative method for remediating soils contaminated with heavy hydrocarbons[J].Journal of Hazardous Materials,2020,383:121165. [77] ESGUERRA D F,HOFFMAN W P,THIES M C.Molecular structures of the constituents of pyrene pitches[J].Fuel,2014,124:133-140. [78] 杨琴,李铁虎,林起浪,等.对苯二甲醛改性煤沥青的结构及耐热性研究[J].煤炭转化,2003(3):80-83. [79] KRISHNAN D,RAIDONGIA K,SHAO J,et al.Graphene oxide assisted hydrothermal carbonization of carbon hydrates[J].ACSnano,2014,8(1):449-457.
点击查看大图
计量
- 文章访问数: 95
- HTML全文浏览量: 17
- PDF下载量: 3
- 被引次数: 0