SPECIATION AND ECOLOGICAL RISK ASSESSMENT OF ARSENIC AND MERCURY IN SOIL AROUND A GOLD MINING AREA IN PINGGU DISTRICT, BEIJING
-
摘要: 以北京市平谷区金矿区周边土壤为研究对象,采集40个表层(0~20 cm)土壤样品,测定土壤中As、Hg总量及其各赋存形态含量,并采用基于重金属形态的次生相原生相分布比值法(ratio of secondary phase to primary phase,RSP)和风险评价编码法(risk assessment code,RAC)对土壤中As、Hg污染程度及生态风险进行评价。结果表明:各采样区土壤中As、Hg总量均超出北京市土壤背景值,分别超出3.94~13.24,11~41.33倍;土壤中As、Hg主要以残渣态存在,除残渣态外,As主要以铁锰氧化态存在,开采沟和尾矿库土壤中Hg主要以碳酸盐结合态存在,开采沟下游和尾矿库外土壤中Hg则主要以强有机态存在;污染程度和生态风险评价结果显示,开采沟及下游土壤As、Hg污染程度较低,研究区土壤中As、Hg整体表现较低风险,在开采沟、YZ尾矿库和JHH尾矿库存在Hg的高风险和极高风险点位,应予以重视。研究结果为治理金矿区周边土壤As、Hg污染提供参考。Abstract: Concentrations and speciation characteristics of arsenic and mercury in 40 surface soil samples around a gold mining area in Pinggu District of Beijing were determined. The pollution and ecological risk of arsenic and mercury were evaluated by the Ratio of Secondary Phase to Primary Phase (RSP) and Risk Assessment Code (RAC). The results showed that the average concentrations of arsenic and mercury in the soil exceeded the background values of soil, by 3.94~13.24 times and 11~41.33 times respectively; arsenic and mercury were primarily dominated by residual fraction, in addition to the residual fractions, arsenic in the soil of mining gully and tailings pond was bound to the Fe-Mn oxides, whereas mercury in the soil downstream of mining gully and outside the tailings pond was bound to the carbonate and the organics; the results of the pollution and ecological risk showed that the pollution degree of arsenic and mercury in the soil of mining gully and downstream was relatively lower, in the soil of the study area arsenic and mercury were at lower risk; in the soil of mining gully, YZ tailings pond and JHH tailings pond mercury were at high and extremely high risk, respectively, which should be paid attention to. The results provided a reference for treating arsenic and mercury pollution in the soil around the gold mining area.
-
Key words:
- heavy metal /
- gold mine /
- mine tailings /
- speciation /
- ecological risk
-
[1] DESISTO S L,JAMIESON H E,PARSONS M B.Arsenic mobility in weathered gold mine tailings under a low-organic soil cover[J].Environmental Earth Sciences,2017,76(22):1-16. [2] AGUILAR N C,FARIA M C S,PEDRON T,et al.Isolation and characterization of bacteria from a brazilian gold mining area with a capacity of arsenic bioaccumulation[J].Chemosphere,2020,240:1-8. [3] GAO Z X.Evaluation of heavy metal pollution and its ecological risk in one river reach of a gold mine in Inner Mongolia,Northern China[J].International Biodeterioration and Biodegradation,2018,128:94-99. [4] VELÁSQUEZ RAMÍREZ M G,BARRANTES J A G,THOMAS E,et al.Heavy metals in alluvial gold mine spoils in the peruvian amazon[J].Catena,2020,189:1-9. [5] SAIFULLAH,DAHLAWI S,NAEEM A,et al.Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice:a critical review[J].Chemosphere,2018,194:171-188. [6] GYAMFI O,SORENSON P B,DARKO G,et al.Human health risk assessment of exposure to indoor mercury vapour in a Ghanaian artisanal small-scale gold mining community[J].Chemosphere,2020,241:1-9. [7] DANIEL A.BARCELOSA,FERNANDA V.M.PONTES,FERNANDA A.N.G.DA SILVA,et al.Gold mining tailing:environmental availability of metals and human health risk assessment[J].Journal of Hazardous Materials,2020,397:1-8. [8] 林荩,梁文静,焦旸,等.陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J/OL].中国地质,2020.https://kns.cnki.net/kcms/detail/11.1167.P.20200810.1639.004.html. [9] DING H J,JI H B,TANG L,et al.Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source[J].Environmental Science and Pollution Research,2016,23(3):2831-2847. [10] 陈小敏,朱保虎,杨文,等.密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J].环境化学,2015,34(12):2248-2256. [11] 黄兴星,朱先芳,唐磊,等.北京市密云水库上游金铁矿区土壤重金属污染特征及对比研究[J].环境科学学报,2012,32(6):1520-1528. [12] CHEN X M,JI H B,WEN YANG,et al.Speciation and distribution ofmercury in soils around goldmines located upstream of Miyun Reservoir,Beijing,China[J].Journal of Geochemical Exploration,2016,163:1-9. [13] 冯艳红,郑丽萍,应蓉蓉,等.黔西北炼锌矿区土壤重金属形态分析及风险评价[J].生态与农村环境学报,2017,33(2):142-149. [14] 王青峰,樊磊磊,王丹,等.贵州典型城市河流表层沉积物汞生态风险研究[J/OL].环境工程,2020.kns.cnki.net/kcms/detail/11.2097.X.20200608.1847.040.html. [15] 司万童,李海东,林乃峰,等.内蒙古达茂旗萤石矿区土壤重金属分布特征与复合污染评价[J].生态与农村环境学报,2016,32(3):404-409. [16] 陈英,孙英杰,王芳芳,等.郑州北郊水源地沉积物中砷的含量及形态分布研究[J].青岛理工大学学报,2013,34(5):55-60. [17] 贾赵恒,罗瑶,沈友刚,等.大冶龙角山矿区农田土壤重金属形态分布及其来源[J].农业环境科学学报,2017,36(2):264-271. [18] STANIMIROVA I,ZEHL K,MASSART D L,et al.Chemometric analysis of soil pollution data using the Tucker N-way method[J].Analytical and Bioanalytical Chemistry,2006,385:771-779. [19] DING H J,JI H B,et al.Application of chemometric methods to analyze the distribution and chemical fraction patterns of metals in sediment from a metropolitan river[J].Environmental Earth Sciences,2010,61:641-657. [20] 赵艳民,秦延文,曹伟,等.洞庭湖表层沉积物重金属赋存形态及生态风险评价[J].环境科学研究,2020,33(3):572-580. [21] 郭彦海,高国龙,王庆,等.典型平原地区生活垃圾焚烧厂周边土壤重金属赋存形态分布特征及生物有效性评价[J].环境科学研究,2019,32(9):1613-1620. [22] 马宏宏,彭敏,刘飞,等.广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J].环境科学,2020,41(1):449-459. [23] 郝晓燕,张茜,冯民权.漳泽水库沉积物重金属污染特征与生态风险评价[J].环境工程,2019,37(1):11-17. [24] RAN X,WANG S,LI R H,et al.Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan,Shaanxi,China[J].Ecotoxicology and Environmental Safety,2017,141:17-24. [25] 张德尧,薛忠财,韩兴,等.冀北山区某矿区周边耕地土壤重金属污染特征及风险评价[J].生态与农村环境学报,2020,36(2):242-249. [26] COUDERT L,BONDU R,RAKOTONIMARO T V,et al.Treatment of As-rich mine effluents and produced residues stability:current knowledge and research priorities for gold mining[J].Journal of Hazardous Materials,2020,386:1-19. [27] 侯秋丽,邢宇鑫,甘柯,等.密云水库周边典型金矿尾矿库土壤环境分析及重金属污染评价[J].能源环境保护,2019,33(6):55-59. [28] 张炜华,胡恭任,于瑞莲,等.厦门某国道旁土壤重金属赋存形态及生物有效性[J].地球与环境,2019,47(2):151-160. [29] 于靖,张华,蔡永兵,等.金矿污染河流的水体和沉积物中重金属分布特征及生态风险评价[J].环境污染与防治,2015,37(12):1-9. [30] 张连科,李海鹏,黄学敏,等.包头某铝厂周边土壤重金属的空间分布及来源解析[J].环境科学,2016,37(3):1139-1146. [31] 杨秋菊,李云松,叶少媚,等.土壤重金属形态分析研究进展[J].云南化工,2019,27(8):46-50. [32] XU X R,HUANG R L,LIU J G,et al.Fractionation and release of Cd,Cu,Pb,Mn,and Zn from historically contaminated river sediment in Southern China:effect of time and pH[J].Environmental Toxicology and Chemistry,2019,38(2):464-473. [33] 杨少斌,孙向阳,张骏达,等.北京市五环内绿地土壤4种重金属的形态特征及其生物有效性[J].水土保持通报,2018,38(3):79-93. 期刊类型引用(29)
1. 李金,仇璐,刘锐,李军,李瀚屹,颜兵,何江,梁贤金,易彪. 垃圾渗滤液处理系统方案评价模型研究. 工业水处理. 2025(03): 121-128 . 百度学术
2. 常雨芳,胡宇博,余文锦,周菲菲,黄文聪. 垃圾渗滤液污水处理设备的臭氧投加复合抗扰控制. 控制工程. 2024(03): 385-391 . 百度学术
3. 何京钟,孙竟,刘羿,柴玉峰,彭春. 多级A/O-MBR工艺在垃圾渗滤液应急处理中的应用. 中国给水排水. 2024(06): 79-86 . 百度学术
4. 李明德. 某城市生活垃圾焚烧电厂渗滤液处理工程实例. 绿色科技. 2024(04): 209-213 . 百度学术
5. 许明俊,向赠烨. 生活垃圾焚烧发电厂垃圾渗滤液与餐厨废水协同处理设计及应用. 广东化工. 2024(09): 142-145 . 百度学术
6. 龚晓露,王俊杰. 溶解氧和碳源对填埋污泥脱水液脱氮效果的影响. 环境科学与技术. 2024(S2): 147-151 . 百度学术
7. 陈斌,韩粒,黄金琼. 生活垃圾焚烧发电厂垃圾渗滤液高回收率设计及应用. 广东化工. 2023(11): 141-143 . 百度学术
8. 张燕燕,郑志宏,刘红亮,付曼琴,李蕾,彭绪亚. 中国垃圾渗滤液产生现状及处理展望. 重庆大学学报. 2023(06): 76-88 . 百度学术
9. 陈客步. 徐州市生活垃圾填埋场地块修复方案. 能源技术与管理. 2023(06): 142-144+155 . 百度学术
10. 左壮,程李秋,张琛玥,王元月,杨晓冬,袁硕. 污泥热水解厌氧消化液处理技术进展. 给水排水. 2023(S2): 166-176 . 百度学术
11. 王海棠. 氨吹脱结晶在垃圾渗滤液处理中的工程研究. 现代化工. 2022(02): 15-18 . 百度学术
12. 冯建武,汤红妍,浮锟,崔一鸣. Fenton预处理对渗滤液中有机成份的影响研究. 广州化工. 2022(09): 60-63 . 百度学术
13. 牧兰. 探究新时期垃圾渗滤液浓缩液处理技术. 皮革制作与环保科技. 2022(17): 95-97 . 百度学术
14. 刘滨,刘伟,刘定文. 基于电导率控制的污水渗滤液处理方法研究. 环境科学与管理. 2021(01): 77-81 . 百度学术
15. 陶海祥,毛兵,江海云,吴小亮. Ru/TiO_2湿式催化氧化降解垃圾渗滤液膜浓缩液. 工业水处理. 2021(09): 111-116 . 百度学术
16. 肖羽堂,吴晓慧,王冠平,石伟,孙临泉,陈艳芳. 垃圾渗滤液高级氧化及其组合工艺深度处理研究进展. 水处理技术. 2020(02): 8-12 . 百度学术
17. 吴晓慧,肖羽堂,孙临泉,陈艳芳,缪爱纯,王冠平,石伟. 臭氧催化氧化耦合MBR深度处理垃圾渗滤液试验. 工业水处理. 2020(03): 78-80+84 . 百度学术
18. 王慧雅. g-C_3N_4/TiO_2/PVDF复合膜构建的MBR+双膜法在垃圾渗滤液深度处理中的应用研究. 现代化工. 2020(05): 159-164 . 百度学术
19. 仇庆春,高碧霄,潘杨,王静. 苏州某垃圾渗滤液处理工艺优化与实践. 苏州科技大学学报(工程技术版). 2020(01): 45-49 . 百度学术
20. 杨姝君,张辰,贺骏,熊建英,李雪亭,黄孝文. 垃圾渗滤液“纳滤+纳滤浓缩液3级减量”技术的工程应用. 环境工程. 2020(06): 81-87+114 . 本站查看
21. 刘建伟,康心悦,岳鹏,陈雪威,田洪钰. 城市生活垃圾综合处理厂渗滤液全量化处理工程设计. 中国给水排水. 2020(10): 70-75 . 百度学术
22. 戚二兵,黄亚继,袁琦,胡华军,樊聪慧,曹彦彦,丁守一. 石灰混凝-浸没蒸发协同处理垃圾渗滤液纳滤膜浓缩液. 环境工程. 2020(12): 54-58+77 . 本站查看
23. 施燕,张万筠,杨婉玲,李晶,林岩,尹南竹. 垃圾渗滤液污染物含量及分布规律研究. 辽宁化工. 2019(03): 201-204 . 百度学术
24. 郑忆枫. 垃圾渗滤液处理难点与应对方式研究. 环境与发展. 2019(03): 69-70 . 百度学术
25. 张超,尚润东,刘宇璇,杨国庆,李璐,施磊,靳永胜. 菌株SDB1-2的筛选及其对垃圾渗滤液处理的应用. 北京农学院学报. 2019(02): 1-4 . 百度学术
26. 万金保,余晓玲,吴永明,邓觅. UASB-氨吹脱-氧化沟-反渗透处理垃圾渗滤液. 水处理技术. 2019(05): 135-138 . 百度学术
27. 胡云飞,裴建川,马勤,王洁屏. 短程硝化在垃圾渗滤液处理工程中的应用. 环境工程学报. 2019(06): 1463-1472 . 百度学术
28. 柴健. 氨吹脱+外置式MBR+DTRO工艺处理垃圾渗滤液工程应用. 水处理技术. 2019(09): 137-140 . 百度学术
29. 张晓杰. 厌氧+MBR+NF+RO工艺与两级DTRO工艺处理垃圾渗滤液的对比分析. 水处理技术. 2019(09): 126-129+132 . 百度学术
其他类型引用(24)
-

计量
- 文章访问数: 244
- HTML全文浏览量: 50
- PDF下载量: 9
- 被引次数: 53