DEVELOPMENT OF A GROUNDWATER MONITORING SYSTEM FOR CO2 LEAKAGE OF CO2-EOR STORAGE IN LOESS TABLELAND REGION
-
摘要: 针对鄂尔多斯黄土塬地区CO2驱油封存项目的监测需求,在综合辨识黄土塬地区地下水潜在的CO2泄漏特征,剖析CO2泄漏进入地下含水层后的空间运移及时间响应特征的基础上,结合CO2驱油封存过程,建立了1套面向黄土塬地区CO2驱油封存CO2泄漏的全时空立体化地下水监测体系。研究表明:受地形地貌及土壤特点影响,黄土塬地区驱油封存的CO2具有盖层突破、井筒侧漏、降雨反渗和地表径流补给的多源泄漏特征;CO2泄漏进入地下含水层后具有纵向快速运移扩散、横向四周缓慢扩散并随地下水向下游运移的空间运移特征和CO2浓度、电导率等指标上升,pH值下降以及Ca2+、Mg2+离子浓度先上升后下降的时间响应特征。基于上述特征所建立的监测体系可为该区域CO2驱油封存示范项目的监测提供参考。Abstract: In view of the lack of literature in monitoring of CO2 leakage into groundwater and the demand of the monitoring of CO2-EOR and storage projects in the Loess Tableland Region in the Ordos Basin, in this study, based on comprehensive characterization of the potential CO2 leakage into groundwater and identification of the spatial migration and time response characteristics of CO2 leakage into groundwater, a full-time and three-dimensional monitoring system was established for monitoring CO2 leakage into groundwater associated with CO2-EOR process in Loess Tableland Region. The result indicated that, affected by topography and soil characteristics, the potential CO2 leakage into groundwater featured with multiple leakage sources, including caprock breakthrough, shaft side leakage, rainfall infiltration and surface runoff recharge. The migration of CO2 leaked into the groundwater were characterized with quick diffusion in the vertical direction, slowly spread out in the horizontal direction, and movement along with water flow to downstream. The time response characteristics were also identified with seven indicators to CO2 leakage into groundwater, such as the increase of CO2 concentration, conductivity, HCO3- concentration, temperature and pressure, the decrease of pH value and the variation of Ca2+ and Mg2+ concentrations. The developed monitoring system reflecting above characteristics could provide solid support for the monitoring of CO2-EOR and storage in Loess Tableland Region.
-
[1] PAGE B,TURAN G,ZAPANTIS A,et al.The Global Status of CCS Report 2019:Targeting Climate Change[R].2019. [2] ZHANG L,LI X,REN B,et al.CO2 storage potential and trapping mechanisms in the H-59 block of Jilin oilfield China[J].International Journal of Greenhouse Gas Control,2016,49:267-280. [3] LIANG Z,SHU W,LI Z,et al.Assessment of CO2 EOR and its geo-storage potential in mature oil reservoirs,Shengli Oilfield,China[J].Petroleum Exploration and Development,2009,36(6):737-742. [4] LI Q,MA J,LI X,et al.Integrated Monitoring of China's Yanchang CO2-EOR Demonstration Project in Ordos Basin[J].Energy Procedia,2018,154:112-117. [5] PRESTON C,WHITTAKER S,ROSTRON B,et al.IEA GHG Weyburn-Midale CO2 monitoring and storage project-moving forward with the Final Phase[J].Energy Procedia,2009,1(1):1743-1750. [6] CARITAT P D,HORTLE A,RAISTRICK M,et al.Monitoring groundwater flow and chemical and isotopic composition at a demonstration site for carbon dioxide storage in a depleted natural gas reservoir[J].Applied Geochemistry,2013,30:16-32. [7] HORTLE A,DE CARITAT P,STALVIES C,et al.Groundwater monitoring at the Otway project site,Australia[J].Energy Procedia,2011,4:5495-5503. [8] MATHIESON A,MIDGELY J,WRIGHT I,et al.In Salah CO2 Storage JIP:CO2 sequestration monitoring and verification technologies applied at Krechba,Algeria[J].Energy Procedia,2011,4:3596-3603. [9] 李琦,刘桂臻,张建,等.二氧化碳地质封存环境监测现状及建议[J].地球科学进展,2013,28(6):718-727. [10] ZHANG L,REN B,HUANG H D,et al.CO2 EOR and storage in Jilin oilfield China:monitoring program and preliminary results[J].Journal of Petroleum Science and Engineering,2015,125:1-12. [11] REN B,REN S R,ZHANG L,et al.Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China[J].Energy,2016,98(Mar.1):108-121. [12] LI Q,LIU X H,ZHANG J,et al.A novel shallow well monitoring system for CCUS:with application to shengli oilfield CO2-EOR project[J].Energy Procedia,2014,63:3956-3962. [13] 王保登,赵兴雷,崔倩,等.中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析[J].环境工程,2018,36(2):33-36. [14] BENSON S A.Geological storage of CO2:analogues and risk management[C]//Carbon Sequestration Leadership Forum,2007. [15] 任韶然,李德祥,张亮,等.地质封存过程中CO2泄漏途径及风险分析[J].石油学报,2014,35(3):591-601. [16] 谷丽冰,李治平,侯秀林.二氧化碳地质埋存研究进展[J].地质科技情报,2008(4):80-84. [17] 胡丽莎,张徽,蔡博峰,等.泄漏情景下碳封存项目的风险强度评估方法初探[J].环境工程,2018,36(2):37-41. [18] 李琦,宋然然,匡冬琴,等.二氧化碳地质封存与利用工程废弃井技术的现状与进展[J].地球科学进展,2016,31(3):225-235. [19] 李丽.渭北黄土台原灌区地下水形成条件及动态研究[D].西安:西北农林科技大学,2008. [20] LIN R F,WEI K Q.Tritium profiles of pore water in the Chinese loess unsaturated zone:implications for estimation of groundwater recharge[J].Journal of Hydrology,2006,328(1/2):192-199. [21] 唐晓静.超临界CO2在含有低渗透率盖层的多孔地层中的泄漏流动模拟[D].哈尔滨:哈尔滨工业大学,2019. [22] 侯大力,罗平亚,王长权,等.高温高压下CO2在水中溶解度实验及理论模型[J].吉林大学学报(地球科学版),2015,45(2):564-572. [23] 王开然.煤层系统CO2-水-煤(岩)地球化学作用及其对盖层封闭性演化的影响[D].长春:吉林大学,2016. [24] 姜玲.CO2地质储存对地下水的环境影响研究[D].北京:中国地质大学,2010. [25] LU J,PARTIN J W,HOVORKA S D,et al.Potential risks to freshwater resources as a result of leakage from CO2 geological storage:a batch-reaction experiment[J].Environmental Earth ences,2010,60(2):335-348. [26] LITTLE M G,JACKSON R B.Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers[J].Environmental Ence & Technology,2010,44(23):9225-9232. [27] EMBERLEY S,HUTCHEON I,SHEVALIER M,et al.Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2-injection enhanced oil recovery site,Saskatchewan,Canada[J].Applied Geochemistry,2005,20(6):1131-1157. [28] 张丙华,景炯炯,耿春香,等.地质封存CO2泄露对地表水中非金属类指标的影响[J].水土保持通报,2016,36(2):161-164,170. [29] 杜尚海.深部储存CO2泄漏对浅层地下水水质影响的场地尺度数值模拟研究[D].长春:吉林大学,2012. [30] 赵慧娟.CO2泄漏对地下水环境影响机理及监测指标研究[D].石家庄:河北地质大学,2019. [31] KHARAKA Y K,THORDSEN J J,KAKOUROS E,et al.Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site,Bozeman,Montana[J].Environmental Earth Sciences,2010,60(2):273-284. [32] FAHRNER S,SCHAEFER D,DAHMKE A.Reactive transport modeling to assess geochemical monitoring for detection of CO2 intrusion into shallow aquifers[J].Energy Procedia,2011,4:3155-3162. [33] 王晓桥,马登龙,夏锋社,等.封储二氧化碳泄漏监测技术的研究进展[J].安全与环境工程,2020,27(2):23-34. [34] 秘昭旭.二氧化碳规模化注入及沿废弃井泄漏对储层影响的数值模拟研究[D].长春:吉林大学,2019. [35] 蔡博峰.国际典型二氧化碳地质封存及其环境监测[J].世界环境,2012(3):48-51.
点击查看大图
计量
- 文章访问数: 226
- HTML全文浏览量: 37
- PDF下载量: 4
- 被引次数: 0