中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

潜流人工湿地中基质在污水净化中的作用机制与选择原理

赵倩 庄林岚 盛芹 张建

赵倩, 庄林岚, 盛芹, 张建. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
引用本文: 赵倩, 庄林岚, 盛芹, 张建. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J]. 环境工程, 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
ZHAO Qian, ZHUANG Lin-lan, SHENG Qin, ZHANG Jian. ROLE AND DESIGN PRINCIPLES OF SUBSTRATE FOR WASEWATER PURIFICATION IN SUBSURFACE FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
Citation: ZHAO Qian, ZHUANG Lin-lan, SHENG Qin, ZHANG Jian. ROLE AND DESIGN PRINCIPLES OF SUBSTRATE FOR WASEWATER PURIFICATION IN SUBSURFACE FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003

潜流人工湿地中基质在污水净化中的作用机制与选择原理

doi: 10.13205/j.hjgc.202109003
基金项目: 

山东省自然科学基金重点项目(ZR2018ZC08N4);山东省重点研发计划重大科技创新工程(2019JZZY010411);山东省自然科学基金博士基金(ZR2019BEE020);山东省基本科研业务费(11440078614025)。

详细信息
    作者简介:

    赵倩(1994-),女,硕士研究生,主要研究方向为流域水环境研究。m15725311661@163.com

    通讯作者:

    庄林岚(1989-),女,博士,助理研究员,主要研究方向为生物/生态法水质净化与污染物控制机制与技术。zhuanglinlan@sdu.edu.cn

ROLE AND DESIGN PRINCIPLES OF SUBSTRATE FOR WASEWATER PURIFICATION IN SUBSURFACE FLOW CONSTRUCTED WETLAND

  • 摘要: 潜流人工湿地依靠基质、微生物以及植物的共同作用实现对污水中各类污染物的去除。其中,基质是潜流人工湿地的重要组成部分,在水质净化中发挥着至关重要的作用。基质可对污染物进行直接吸附去除。不同基质类型对氨氮与总磷具有不同的吸附能力,同时,吸附效率受到水质、水力条件等参数影响。此外,基质为微生物提供附着表面,基质材质、内部孔道结构、比表面积等均影响生物膜的形成与发展,进而间接影响人工湿地的污水净化功能。通过改变基质所处淹没/暴露状态、增加缓释碳源基质、增加铁碳电解对基质等方式来增加补氧、强化反硝化和电化学强化,从而改善人工湿地对NH3-N、TN与TP类污染物的去除效果。
  • [1] ZHUANG L L,YANG T,ZHANG J,et al.The configuration,purification effect and mechanism of intensified constructed wetlandfor wastewater treatment from the aspect of nitrogen removal:a review[J].Bioresource Technology,2019,293(4):122086.
    [2] XU J,LIU X W,HUANG J L,et al.The contributions and mechanisms of iron-microbes-biochar in constructed wetlands for nitrate removal from low carbon/nitrogen ratio wastewater[J].RSC Advances,2020,10(39):23212-23220.
    [3] WU Z,HE J,HE F,et al.Comprehensive evaluation of substrates in vertical-flow constructed wetlands for domestic wastewater treatment[J].Water Practice and Technology,2015,10(3):625-632.
    [4] RAMIREZ S,TORREALBA G,LAMEDA-CUICAS E,et al.Investigation of pilot-scale constructed wetlands treating simulated pre-treated tannery wastewater under tropical climate[J].Chemosphere,2019,234(6):496-504.
    [5] 胡洪营,石磊,许春华,等.区域水资源介循环利用模式:概念·结构·特征[J].环境科学研究,2015,28(6):839-847.
    [6] LIU F F,FAN J L,DU J H,et al.Intensified nitrogen transformation in intermittently aerated constructed wetlands:removal pathways and microbial response mechanism[J].Science of the Total Environment,2019,650(10):2880-2887.
    [7] ZHENG X Y,JIN M Q,ZHOU X,et al.Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C,N,and P in salty permitted effluent of wastewater treatment plant[J].Science of the Total Environment,2019,649(8):21-30.
    [8] 万正芬,张学庆,卢少勇.19种人工湿地填料对磷吸附解吸效果研究[J].水处理技术,2015,41(4):35-39

    ,44.
    [9] 卢少勇,万正芬,李锋民,等.29种湿地填料对氨氮的吸附解吸性能比较[J].环境科学研究,2016,29(8):1187-1194.
    [10] GUAN W,YIN M,HE T,et al.Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water[J].Environmental Science and Pollution Research,2015,22(20):16202-16209.
    [11] LONG Y,ZHANG Z K,PAN X K,et al.Substrate influences on archaeal and bacterial assemblages in constructed wetland microcosms[J].Ecological Engineering,2016,94(6):437-442.
    [12] XU R,ZHANG Y,LIU R,et al.Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands[J].Environmental Science and Pollution Research,2019,26(16):16229-16238.
    [13] ZHOU Y C,LUO S,YU B H,et al.A comparative analysis for the development and recovery processes of different types of clogging in lab-scale vertical flow constructed wetlands[J].Environmental Science and Pollution Research,2018,25(18):24073-24083.
    [14] TEIXEIRA D L,MATOS A T,PIMENTEL DE MATOS M,et al.The influence of plant roots on the clogging process and the extractive capacity of nutrients/pollutants in horizontal subsurface flow constructed wetlands[J].Ecological Engineering,2018,120(5):54-60.
    [15] 王功,魏东洋,方晓航,等.3种湿地填料对水体中氮磷的吸附特性研究[J].环境污染与防治,2012,34(11):9-13.
    [16] 陈丽丽,赵同科,张成军,等.不同因素对人工湿地基质脱氮除磷效果的影响[J].环境工程学报,2013,7(4):1261-1266.
    [17] 熊家晴,赵泽宁,葛媛,等.不同基质垂直流人工湿地对高污染河水中磷的去除效果[J].环境化学,2014,33(7):1208-1213.
    [18] 黄建洪,莫文锐,田森林,等.三种人工湿地填料对氨氮与磷的吸附特性[J].应用化工,2012,41(5):774-780.
    [19] ZHENG X H,ZHUANG L L,ZHANG J,et al.Advanced oxygenation efficiency and purification of wastewater using a constant partially unsaturated scheme in column experiments simulating vertical subsurface flow constructed wetlands[J].Science of the Total Environment,2020,703:135480.
    [20] KRAIEMA K,KALLALI H,WAHAB MA,et al.Comparative study on pilots between anammox favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment[J].Science of the Total Environment,2019,670(3):644-653.
    [21] PELISSARI C,GUIVERNAU M,VINAS M,et al.Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J].Water Research,2018,141(5):185-195.
    [22] SILVEIRA D D,BELLI FILHO P,PHILIPPI L S,et al.Influence of partial saturation on total nitrogen removal in a single-stage french constructed wetland treating raw domestic wastewater[J].Ecological Engineering,2015,77(1):257-264.
    [23] SAEED T,HAQUE I,KHAN T Organic matter and nutrients removal in hybrid constructed wetlands:influence of saturation[J].Chemical Engineering Journal,2019,371(4):154-165.
    [24] SAEED T,SUN G Pollutant removals employing unsaturated and partially saturated vertical flow wetlands:a comparative study[J].Chemical Engineering Journal,2017,325(5):332-341.
    [25] CABRED S,GIUNTA R V,BUSALMEN J E,et al.Reduced depth stacked constructed wetlands for enhanced urban wastewater treatment[J].Chemical Engineering Journal,2019,372(4):708-714.
    [26] BUTTERWORTH E,RICHARDS A,JONES M,et al.Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment[J].Water,2016,8(9):365.
    [27] WU S B,LEI M,LU Q M,et al.Treatment of pig manure liquid digestate in horizontal flow constructed wetlands:effect of aeration[J].Engineering in Life Sciences,2016,16(3):263-271.
    [28] FAN J L,LIANG S,ZHANG B,et al.Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy[J].Environmental Science and Pollution Research,2013,20(4):2448-2455.
    [29] PAPAEVANGELOU V A,GIKAS G D,VRYZAS Z,et al.Treatment of agricultural equipment rinsing water containing a fungicide in pilot-scale horizontal subsurface flow constructed wetlands[J].Ecological Engineering,2017,101(1):193-200.
    [30] PAPAEVANGELOU V,GIKAS G D,TSIHRINTZIS V A.Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater[J].Environmental Science and Pollution Research,2016,23(15):19504-19519.
    [31] RANIERI E,GORGOGLIONE A,SOLIMENO A A comparison between model and experimental hydraulic performances in a pilot-scale horizontal subsurface flow constructed wetland[J].Ecological Engineering,2013,60(7):45-49.
    [32] CHEN Z B,VYMAZAL J,KUSCHK P Effects of tidal operation on pilot-scale horizontal subsurface flow constructed wetland treating sulfate rich wastewater contaminated by chlorinated hydrocarbons[J].Environmental Science and Pollution Research,2017,24(1):1042-1050.
    [33] ZHONG F,WU J,DAI Y R,et al.Performance evaluation of wastewater treatment using horizontal subsurface flow constructed wetlands optimized by micro-aeration and substrate selection[J].Water Science and Technology,2015,71(9):1317-1324.
    [34] WU H M,FAN J L,ZHANG J,et al.Intensified organics and nitrogen removal in the intermittent-aerated constructed wetland using a novel sludge-ceramsite as substrate[J].Bioresource Technology,2016,210(1):101-107.
    [35] DU L,ZHAO Y Q,WANG C,et al.Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate[J].Science of the Total Environment,2020,721:137765.
    [36] ZHANG X L,ZHAO S J,GAO J T,et al.Microbial action and mechanisms for Cr(Ⅵ) removal performance by layered double hydroxide modified zeolite and quartz sand in constructed wetlands[J].Journal of Environmental Management,2019,246(6):636-646.
    [37] GUO L C,LV T,HE K,et al.Removal of organic matter,nitrogen and faecal indicators from diluted anaerobically digested slurry using tidal flow constructed wetlands[J].Environmental Science and Pollution Research,2017,24(6):5486-5496.
    [38] WU S B,ZHANG D X,AUSTIN D,et al.Evaluation of a lab-scale tidal flow constructed wetland performance:oxygen transfer capacity,organic matter and ammonium removal[J].Ecological Engineering,2011,37(11):1789-1795.
    [39] ZHI W,JI G D.Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J].Water Research,2014,64(6):32-41.
    [40] LI L Z,HE C G,JI G D,et al.Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J].Ecological Engineering,2015,81(4):266-271.
    [41] XU P,XIAO E R,HE F,et al.High performance of integrated vertical-flow constructed wetland for polishing low C/N ratio river based on a pilot-scale study in Hangzhou,China[J].Environmental Science and Pollution Research,2019,26(22):22431-22449.
    [42] YI X H,JING D D,WAN J,et al.Temporal and spatial variations of contaminant removal,enzyme activities,and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff[J].Environmental Science and Pollution Research,2016,23(9):8565-8576.
    [43] HUSSAIN Z,ARSLAN M,SHABIR G,et al.Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands:a comparison at pilot scale[J].Science of the Total Environment,2019,685(5):370-379.
    [44] HUA G F,KONG J,JI Y Y,et al.Influence of clogging and resting processes on flow patterns in vertical flow constructed wetlands[J].Science of the Total Environment,2018,621(10):1142-1150.
    [45] ZHOU X,LIANG C L,JIA L X,et al.An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment:impact of influent strengths[J].Bioresource Technology,2018,247(9):844-850.
    [46] YU L J,CHEN T,XU Y H.Effect of corn cobs as external carbon sources on nitrogen removal in constructed wetlands treating micro-polluted river water[J].Water Science and Technology,2019,79(9):1639-1647.
    [47] DENG C R,HUANG L,LIANG Y K,et al.Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands:microbial community structure and metabolite characteristics[J].Science of the Total Environment,2019,694(3):133687.
    [48] JI B H,CHEN J Q,MEI J,et al.Roles of biochar media and oxygen supply strategies in treatment performance,greenhouse gas emissions,and bacterial community features of subsurface-flow constructed wetlands[J].Bioresource Technology,2020,302(7):122890.
    [49] YUAN C B,ZHAO F C,ZHAO X H,et al.Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland[J].Chemical Engineering Journal,2020,392:124840.
    [50] LIU H Q,HU Z,ZHANG Y J,et al.Microbial nitrogen removal of ammonia wastewater in poly (butylenes succinate)-based constructed wetland:effect of dissolved oxygen[J].Applied Microbiology and Biotechnology,2018,102(21):9389-9398.
    [51] SHEN Y H,ZHUANG L L,ZHANG J,et al.A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands[J].Chemical Engineering Journal,2019,359(21):706-712.
    [52] WANG Y M,LIN Z Y,HUANG W,et al.Sulfur and iron cycles promoted nitrogen and phosphorus removal in electrochemically assisted vertical flow constructed wetland treating wastewater treatment plant effluent with high S/N ratio[J].Water Research,2019,151(11):20-30.
    [53] WEI F,ZHOU Q W,WU W H,et al.Investigating the influence of iron-carbon microelectrolysis on the performance and microbial community of constructed wetlands[J].Water and Environment Journal,2019,34(S1):414-424.
    [54] LIANG Y,WEI D Y,HU J S,et al.Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland[J].Water Research,2020,168:115154.
  • 期刊类型引用(29)

    1. 李秋芬,田文杰,孙波,迟赛赛,罗梓峻,徐爱玲,宋志文,崔正国. 海水养殖尾水人工湿地处理系统及其脱氮过程研究进展和展望. 渔业科学进展. 2024(02): 82-95 . 百度学术
    2. 粟春青,韩梦梦,鲁海燕,罗炘武,许勇,丁傲,宫彦章. 新型玻璃轻石对雨水径流的渗蓄特性与净化能力. 环境污染与防治. 2024(03): 348-355+359 . 百度学术
    3. 李俊明,肖蓉,胡艳萍,王雅萍,郭聪伶,白军红. 添加互花米草碎屑的人工湿地对阿特拉津和重金属的净化效果. 湿地科学. 2024(03): 405-417 . 百度学术
    4. 杨贞武,钟晨,周梦雨,胡玉洁. 潜流人工湿地对实际农村生活污水的净化效果. 资源节约与环保. 2024(03): 84-88+93 . 百度学术
    5. 代学民,王立杰,南国英,邓大鹏,张斯,张涛,任淑萍. 潜流人工湿地脱氮除磷基质的应用研究及展望. 工业用水与废水. 2024(02): 1-6 . 百度学术
    6. 张莉,刘玮,张瑞,周华坤,毛旭锋,金艳霞,陈哲,汪海波. 西宁湟水河人工湿地对水体氮、磷污染物负荷削减的研究. 青海科技. 2024(01): 25-33 . 百度学术
    7. 全欣宇,廖兵,郭娜,周正林. 人工湿地处理分散式生活污水中氮磷的研究进展. 环境生态学. 2024(06): 121-129 . 百度学术
    8. 阙祥尧,张燕萍,余建芳,吴子君,侯明勇,丁国栋,刘文鼎,钟佳慧,张子莹,熊文清,章海鑫. 3种水生植物潜流人工湿地模拟处理池塘养殖尾水的研究. 渔业现代化. 2024(04): 105-116 . 百度学术
    9. 林丹丹,陈瑶,贾珍珍,刘学欣. 水平潜流人工湿地在高速公路服务区污水深度处理的应用研究. 交通节能与环保. 2023(01): 141-144 . 百度学术
    10. 王文冬,高晓薇,王利军,刘学燕,焦振寰. 河道微污染水体旁路复合流湿地强化净化技术研究及应用. 环境工程. 2023(01): 158-163 . 本站查看
    11. 伍建业,吴永贵,兰美燕,彭子乐,朱鑫维,郑煜,贺宇. 复合人工湿地对陆基水产养殖废水中氮磷的净化及其微生物群落特征. 环境工程学报. 2023(02): 517-531 . 百度学术
    12. 谭莹,胡越航,钱云霞,郭安南. 互花米草定植的养殖尾水处理人工湿地中古菌群落的组成与分布. 宁波大学学报(理工版). 2023(03): 1-9 . 百度学术
    13. 陈小凤,黎玮欣,李敏倩,蔡泽铭,公晗,严慕婷. 3种常见水产养殖尾水处理技术的研究进展. 水产科技情报. 2023(03): 194-200 . 百度学术
    14. 王文荟,季闻翔,赵杰,韩玉泽,田业超,朱道旭,李冬梅,李爱民. 铁碳微电解基质在人工湿地中的作用机理及研究现状. 环境化学. 2023(04): 1196-1208 . 百度学术
    15. 郑淑君,王铁运,王妍,刘云根,梁帆帆. 不同污染负荷下垂直流人工湿地对农村灰水的净化效果及其影响分析. 环境工程. 2023(S1): 27-32 . 本站查看
    16. 胡春明,娄立峰,尤立. 适用于贵州某酒厂生态湿地除磷的本地基质筛选研究. 环境保护科学. 2023(03): 103-106+138 . 百度学术
    17. 王文冬,王利军,高晓薇,董宁宁,周俊,刘艳,袁林. 旁路循环复合垂直流潜流湿地水质提升工程研究. 中国给水排水. 2023(12): 135-140 . 百度学术
    18. 潘振. 广西某乡镇污水处理厂提标改造工程设计. 节能. 2023(06): 80-82 . 百度学术
    19. 韦雅妮,吴星杰,李丽,于跃,程承,吴庭巨,后永飞. 人工湿地基质在污水净化中的选择与再生研究. 江西农业学报. 2023(06): 170-176 . 百度学术
    20. 庄林岚,钱唯一,胡振,吴海明,谢慧君,王跃昌,刘华清,张建. 微藻—人工湿地耦合系统强化污水深度净化与资源转化. 环境工程. 2023(09): 107-113 . 本站查看
    21. 肖波,杜红霞. 不同基质组配对富营养化水体净化效果的研究. 现代园艺. 2023(22): 19-21 . 百度学术
    22. 朱四喜,夏国栋,赵伟,高宁,王众. 复合垂直流人工湿地真菌群落与基质微环境的关系研究. 安全与环境学报. 2023(12): 4481-4490 . 百度学术
    23. 丁德馨,谭国炽,曾晓娜,马静,张悦,张辉,胡南. 3种植物-人工湿地对铀尾矿库浸渍水修复效果比较. 工业水处理. 2022(01): 126-132+142 . 百度学术
    24. 陈贺涵,张菁,尹立鹏,姜学霞,谢春生. 富营养化水体湿地生态修复研究与应用进展. 绿色科技. 2022(10): 62-65+68 . 百度学术
    25. 王雪峰,刘文畅,樊利鹏,谭洪新,罗国芝,孙大川. 新建组合填料垂直潜流湿地系统处理沿海垦区池塘养殖尾水的效果. 渔业现代化. 2022(03): 46-54 . 百度学术
    26. 吴浩,江成,曹文平,李泽兵. 垂直流动态强化下基质对污染物的吸附活性及机理. 环境工程. 2022(07): 52-60+115 . 本站查看
    27. 张友国,谷惠民,张胜军,唐厚全,田勇,魏小锋. 人工湿地升级改造实践探讨——以菏泽市安兴河为例. 湿地科学与管理. 2022(04): 64-67 . 百度学术
    28. 李青,张琼华,周卫东,朱瑞亭,DZAKPASU Mawuli,熊家晴,王晓昌. 人工湿地净化污水处理厂低浓度尾水的效果. 水生生物学报. 2022(10): 1456-1465 . 百度学术
    29. 张紫涵,代嫣然,梁威. 滤坝基质排布方式对微污染水体净化效果的影响. 环境工程学报. 2021(12): 3916-3923 . 百度学术

    其他类型引用(18)

  • 加载中
计量
  • 文章访问数:  365
  • HTML全文浏览量:  76
  • PDF下载量:  10
  • 被引次数: 47
出版历程
  • 收稿日期:  2020-08-01
  • 网络出版日期:  2022-01-21

目录

    /

    返回文章
    返回