GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL
-
摘要: 阻隔墙能够有效阻止地下水中的污染物扩散,以水泥土为研究对象,通过渗透实验、稳定性实验、吸附实验及工程案例研究了阻隔墙的性能。结果表明:随着水泥掺量增大,水泥土渗透系数不断降低,粉质黏土、黏质粉土、粉砂水泥掺量分别为12%、20%、25%时,抗渗效果较好。无侧限抗压强度随水泥掺量增加而增大,粉砂水泥土阻隔墙增幅显著。土壤黏粒含量越高,满足水泥土坍落度要求的水灰比越大。等温吸附符合Freundlich模型,水泥土对Cu2+和Zn2+吸附效果较四氯酚和六价铬显著。吸附动力学符合准二级吸附动力学方程,吸附过程主要为化学吸附,粉质黏土水泥土吸附Cu2+和Zn2+的平衡吸附量最高,分别为7.692,7.143 mg/g。工程应用表明,水泥土阻隔墙对地下水石油烃有机污染物具有显著的阻控效果,监测井检测浓度均低于风险控制值。Abstract: The barrier wall can prevent the diffusion of pollutants in groundwater effectively. Taking cement soil as the research object, the performance of the barrier wall was studied through laboratory penetration test, stability experiment, adsorption experiment and engineering case study. The results showed that with the increase of cement content, the permeability coefficient of cement-soil decreased continuously. Silty clay, clayey silty and silty sand with the cement content of 12%, 20% and 25% had good anti-permeability effect. The unconfined compressive strength increased with the increase of cement content, and the increase of compressive strength of silty sand cement soil barrier wall was obvious. The higher the clay content of soil, the greater the water-cement ratio was to meet the slump requirement of cement soil. The adsorption isotherms conformed to Freundlich model and the soil-cement adsorbed Cu2+ and Zn2+ better than tetrachlorophenol and Cr(Ⅵ). The adsorption kinetics conformed to the quasi-secondary adsorption kinetic equation and the adsorption process was mainly chemical adsorption. The equilibrium adsorption capacity of Cu2+ and Zn2+ adsorbed by silty clay cement soil was the highest (equaled to 7.692, 7.143 mg/g, respectively). The engineering application proved that the cement-soil barrier wall had remarkable control effect on petroleum hydrocarbon pollutants in groundwater and the detection concentration of monitoring wells was lower than the risk control value.
-
Key words:
- cement soil /
- groundwater /
- pollution barrier /
- adsorption
-
[1] 黄琴琴.粉煤灰-膨润土对地下水中镉/铅的阻隔机理及应用研究[D].成都:成都理工大学,2019. [2] 甄胜利,霍成立,贺真,等.垂直阻隔技术的应用与对比研究[J].环境卫生工程,2017,25(1):51-56. [3] ZHANG W J,QIU Q W.Analysis on contaminant migration through vertical barrier walls in a landfill in China[J].Environmental Earth Sciences,2010,61(4):847-852. [4] GARCIA-SINERIZ J L,VILLAR M V,REY M,PALACIOS B.Engineered barrier of bentonite pellets and compacted blocks:state after reaching saturation[J].Engineering Geology,2015,192:33-45. [5] 黄琴琴,刘国,文梅燕,等.粉煤灰-膨润土阻隔墙控制地下水中镉污染[J].环境工程学报,2019,13(3):652-663. [6] LIN J W,JIANG B H,ZHAN Y H.Effect of pre-treatment of bentonite with sodium and calcium ions on phosphate adsorption onto zirconium-modified bentonite[J].Journal of Environmental Management,2018,217:183-195. [7] 邵红,刘相龙,李云姣,等.两种改性膨润土对含油废水吸附行为的研究[J].环境科学学报,2015,35(7):2114-2120. [8] 文一多.砂土/粉土-膨润土防污隔离墙渗透性的室内和现场试验研究[D].杭州:浙江大学,2017. [9] 贾超.水泥土搅拌桩对湿陷性黄土地基的加固效果研究[D].兰州:兰州交通大学,2020. [10] 张国锋.三轴搅拌桩作为基坑止水帷幕的应用[J].建筑机械,2019(3):20-23. [11] 叶观宝,叶书麟.水泥土搅拌桩加固软基的试验研究[J].同济大学学报(自然科学版),1995(3):270-275. [12] 焦德才,杨俊杰,董猛荣,等.水泥土的长期渗透特性研究[J].中国海洋大学学报(自然科学版),2021,51(2):112-118. [13] 李林.页岩风化料塑性水泥土防渗渠道[J].农田水利与小水电,1988(6):31-33. [14] 杨静,付婷.水泥土渗透特性研究现状总结[J].科学技术创新,2017(35):106-107. [15] 郝洁,李军,郑国宝,等.水泥土搅拌桩防渗墙对土坝防渗效果的模拟研究[J].河北工程大学学报(自然科学版),2020,37(4):1-6. [16] 胡忠平,王苏.不同养护时间和水泥掺入量条件下水泥土的抗压强度试验研究[J].中国设备工程,2020(24):10-11. [17] 卢丹阳.不同配比水泥土对铜离子的吸附性能研究[J].安徽建筑,2020,27(5):168-169. [18] 张志军,刘炯天,冯莉,等.基于Langmuir理论的平衡吸附量预测模型[J].东北大学学报(自然科学版),2011,32(5):749-751,756. [19] 安增莉,侯艳伟,蔡超,等.水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J].环境化学,2011,30(11):1851-1857. [20] 中华人民共和国工业和信息化部.HG/T 20715-2020工业污染场地竖向阻隔技术规范[S].北京科学技术出版社,2020. [21] 何国斌.土壤离子扩散与吸附/解吸微观机制的Monte Carlo模拟[D].重庆:西南大学,2012. [22] 李素珍,徐仁扣.可变电荷土壤中胶粒双电层的相互作用与阴阳离子同时吸附[J].土壤学报,2009,46(5):948-952. [23] 陈云敏,王誉泽,谢海建,等.黄土-粉土混合土对Pb(Ⅱ)的静平衡和动态吸附特性[J].岩土工程学报,2014,36(7):1185-1194.
点击查看大图
计量
- 文章访问数: 274
- HTML全文浏览量: 23
- PDF下载量: 13
- 被引次数: 0