CONTROL STRATEGY OF SUBSEQUENT CARBON SOURCE IN ANAMMOX-MFC SYSTEM FOR ENHANCEMENT NITROGEN REMOVAL AND POWER GENERATION
-
摘要: 考察添加后续碳源的厌氧氨氧化微生物燃料电池(ANAMMOX-MFC)高效脱氮产电运行的稳定性,采用高通量测序及KEGG功能酶预测对微生物群落结构及功能基因的变化进行表征。结果表明:系统可以连续稳定运行60 d,TN去除率稳定在96%以上,连续运行最大输出电压为800 mV左右。添加适当浓度的乙酸钠,可增高污泥中发酵菌Enterococcus、反硝化产电菌Pseudomonas、Thauera的相对丰度进而有效促进产电。但是过度水解酸化会抑制AnAOB活性。第68~104天,出水NH4+-N浓度升高,TN去除率下降至90%左右,通过停加乙酸钠TN去除率恢复至95%以上。ANAMMOX-MFC系统出水NH4+-N浓度可作为后续碳源停加的"调控信号",使得脱氮产电系统稳定高效运行,为厌氧氨氧化与微生物燃料电池脱氮产电的技术结合提供了很好的理论依据,具有一定的工程指导意义。Abstract: This article mainly investigated the stability of anammox microbial fuel cell (ANAMMOX-MFC) high-efficiency denitrification and electricity generation operation with the addition of subsequent carbon sources, and used high-throughput sequencing and KEGG functional enzymes to predict changes in microbial community structure and functional genes characterization. The results showed that the system could run continuously and get stably for 60 days, the total nitrogen removal rate was 96% above, and the maximum output voltage of continuous operation was about 800 mV. Adding a proper concentration of sodium acetate could increase the relative abundance of the fermenting bacteria Enterococcus, denitrifying electricity-producing bacteria Pseudomonas, and Thaurea in the sludge, thereby effectively promoting electricity production. However, excessive hydrolysis and acidification will inhibit AnAOB activity. From the 68th to the 104th day, the ammonia nitrogen concentration in the effluent increased, and the total nitrogen removal rate dropped to about 90%. The total nitrogen removal rate was restored to 95% above by stopping the sodium acetate. The NH4+-N concentration in the effluent of the ANAMMOX-MFC system could be used as a "regulation signal" for the subsequent stop of the carbon source, so that the denitrification and electricity generation system could run stably and efficiently. It provides a combination of anaerobic ammonia oxidation and microbial fuel cell denitrification and electricity generation technology and has a good theoretical basis and certain engineering significance.
-
[1] STROUS M,HEIJNEN J J,KUENEN J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology & Biotechnology,1998,50(5):589-596. [2] MA B,XU X X,WEI Y,et al.Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants[J].Bioresource Technology,2020,299:122697. [3] LACKNER S,GILBERT E M,VLAEMINCK S E,et al.Full-scale partial nitritation/anammox experiences:an application survey[J].Water Research,2014,55:292-303. [4] YIN X,QIAO S,ZHOU J T.Using electric field to enhance the activity of anammox bacteria[J].Applied Microbiology and Biotechnology,2015,99(16):6921-6930. [5] LI C,REN H Q,XU M,et al.Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J].Bioresource Technology,2015,175:545-552. [6] HASSAN M,WEI H W,QIU H J,et al.Power generation and pollutants removal from landfill leachate in microbial fuel cell:variation and influence of anodic microbiomes[J].Bioresource Technology,2018,247:434-442. [7] YAN H,REGAN J M.Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas[J].Biotechnology & Bioengineering,2013,110(3):785-791. [8] 张吉强.微生物燃料电池同步脱氮产电性能及机理研究[D].杭州:浙江大学,2014. [9] 谢作甫.MFC脱氮产电性能及电导率研究[D].杭州:浙江大学,2014. [10] 许明熠,周少奇,刘泽珺,等.耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究[J].环境科学学报,2017,37(1):154-161. [11] YANG F,REN L J,PU Y P,et al.Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells[J].Bioresource Technology,2013,128:784-787. [12] XIN X D,HE J G,LI L,et al.Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives[J].Bioresource Technology,2018,250:69-78. [13] LIU Y W,SUN J,PENG L,et al.Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling[J].Scientific Reports,2016,6:27576. [14] TAKEKAWA M,PARK G,SODA S,et al.Simultaneous anammox and denitrification (sad) process in sequencing batch reactors[J].Bioresource Technology,2014,174:159-166. [15] YIN X,QIAO S,ZHOU J T.Effects of cycle duration of an external electrostatic field on anammox biomass activity[J].Scientific Reports,2016,6:19568. [16] 孔志远.厌氧氨氧化微生物燃料电池同步脱氮产电性能及机理研究[D].呼和浩特:内蒙古大学,2019. [17] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].中国环境科学出版社,2002. [18] FENG Y,ZHAO Y P,JIANG B,et al.Discrepant gene functional potential and cross-feedings of anammox bacteria Ca.Jettenia caeni and Ca.Brocadia sinica in response to acetate[J].Water Research,2019,165:114974. [19] KARTAL B,VAN N L,KELTJENS J T,et al.Anammox——growth physiology,cell biology,and metabolism[J].Advances in Microbial Physiology,2012,60:211-262. [20] NI S Q,NI J Y,HU D L,et al.Effect of organic matter on the performance of granular anammox process[J].Bioresource Technology,2012,110:701-705. [21] LEAL C D,PEREIRA A D,NUNES F T,et al.Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater:effect of cod/n ratios on process performance and bacterial community structure[J].Bioresource Technology,2016,211:257-266. [22] ZHANG C,LI L,HU X M,et al.Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature[J].Bioresource Technology,2019,275:225-231. [23] GRAAF A V D A,BRUIJN D P,ROBERTSON A L,et al.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology,1996,142(8):2187-2196. [24] LIU H,CHENG S,LOGAN B E.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J].Environmental Science & Technology,2005,39(2):658-662. [25] SHAW D R,ALI M,KATURI K P,et al.Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria[J].Nature Communications,2020,11(1):2058. [26] STAGER J L,ZHANG X Y,LOGAN B E.Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater[J].Bioelectrochemistry,2017,118:154-160. [27] COBLE P G,SCHULTZ C A,MOPPER K.Fluorescence contouring analysis of DOC intercalibration experiment samples:a comparison of techniques[J].Marine Chemistry,1993,41(1/2/3):173-178. [28] CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environ Sci Technol,2003,37(24):5701-5710. [29] HUANG L P,ANGELIDAKI I.Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J].Biotechnol Bioeng,2008,100(3):413-422. [30] STROUS M,PELLETIER E,MANGENOT S,et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794. [31] 刘怡心,李卫华,申慧彦,等.厌氧氨氧化反应过程的三维荧光光谱解析[J].环境工程学报,2015,9(10):4680-4686. [32] RABAEY K,BOON N,HÖFTE M,et al.Microbial phenazine production enhances electron transfer in biofuel cells[J].Environmental Science & Technology,2005,39(9):3401-3408. [33] YANG N,ZHAN G Q,LI D,et al.Complete nitrogen removal and electricity production in thauera-dominated air-cathode single chambered microbial fuel cell[J].Chemical Engineering Journal,2018. [34] KHATER D Z,EL-KHATIB K M,HASSAN H M.Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation[J].Journal,Genetic Engineering & Biotechnology,2017,15(1):127-137. [35] 宋壮壮,吕爽,刘哲,等.厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J].环境科学,2019,40(11):5057-5065. [36] NOBU M K,TAMAKI H,KUBOTA K,et al.Metagenomic characterization of candidatus defluviicoccus tetraformis strain tfo71,a tetrad-forming organism,predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal[J].Environ Microbiol,2014,16(9):2739-2751. [37] KHALIL J G,GANDHI S D,PARK D K,et al.Cutibacterium acnes in spine pathology:pathophysiology,diagnosis,and management[J].J Am Acad Orthop Surg,2019,27(14):633-640. [38] GUAN F,YUAN X C,DUAN J Z,et al.Phenazine enables the anaerobic respiration of pseudomonas aeruginosa via electron transfer with a polarised graphite electrode[J].Int Biodeterior Biodegradation,2019,137:8-13. [39] CHU Z R,WANG K,LI X K,et al.Microbial characterization of aggregates within a one-stage nitritation:anammox system using high-throughput amplicon sequencing[J].Chemical Engineering Journal,2015,262:41-48. [40] FINK G,SZEWCZAK-HARRIS R,LÖWE J.Snapshot:the bacterial cytoskeleton[J].Cell,2016,166(2):522-522,1. [41] WANG W G,YAN Y,ZHAO Y H,et al.Characterization of stratified eps and their role in the initial adhesion of anammox consortia[J].Water Research,2020,169:115223.
点击查看大图
计量
- 文章访问数: 140
- HTML全文浏览量: 23
- PDF下载量: 4
- 被引次数: 0