CHARACTERISTICS AND CAUSES OF AIR CONDITION IN SHANGHAI DURING COVID-19 PREVENTION PERIODS
-
摘要: 为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。
-
关键词:
- 新型冠状病毒肺炎疫情 /
- 大气污染物 /
- 合成分析 /
- 拉格朗日粒子扩散模型 /
- 上海
Abstract: In order to explore the impact of the COVID-19 epidemic implementation policy on air pollution variation, ρ(PM2.5), ρ(PM10) and meteorological elements (temperature, relative humidity, wind direction, wind speed, atmospheric pressure and rainfall) were observed by the microenvironment platform on the roof of a high-rise dormitory building in the inner ring of Shanghai from January 14th, 2020 to February 18th, 2020. The characteristics and influencing factors of air pollutants before and after the implementation of the policy were analyzed through statistical analysis, synthetic analysis, Lagrangian particle dispersion model and Spearman correlation method, based on the above observation data in 2020 and the corresponding observation data in 2019, as well as the hourly monitoring data of gaseous pollutants (O3, NO2, CO, SO2) at Yangpu Sipiao air quality monitoring station. The results showed that:1) Changes in pollutant concentrations:the implementation of the policy reduced the magnitude of ρ(PM2.5), ρ(PM10) and ρ(NO2) significantly:ρ(PM2.5) and ρ(PM10) decreased from 61.4 μg/m3 to 38.1 μg/m3 and from 102.4 μg/m3 to 63.5 μg/m3, respectively, with a decrease rate of 38.0%, ρ(NO2) decreased from 57.3 μg/m3 to 27.0 μg/m3, with a decrease rate of 52.9%. ρ(O3) increased from 47.6 μg/m3 and 69.5 μg/m3. The diurnal bimodal and double-valley variation pattern of ρ(PM2.5) and ρ(PM10) became a single-valley pattern after the implementation of the policy; 2) The influence of meteorological factors:the anomaly of the southerly wind weakened the intensity of the winter monsoon, and the anomaly of the positive anomaly in the middle troposphere inhibited the development of convective activities, which easily led to the accumulation of atmospheric pollutants near the ground. ρ(PM2.5) and ρ(PM10) were negatively correlated with relative humidity. The influence of wind speed on ρ(PM2.5) and ρ(PM10) depended on the wind direction; 3) The impact of external sources:the urban agglomeration of the Yangtze River Delta and the surrounding provinces such as Shandong and Henan contributed significantly to ρ(PM2.5) and ρ(PM10) in Shanghai.-
Key words:
- COVID-19 /
- air pollutants /
- synthetic analysis /
- Lagrangian particle dispersion model /
- Shanghai
-
[1] 马宁,刘民,梁万年.2008年北京奥运会对北京空气质量的影响[J].首都公共卫生,2010,4(3):103-110. [2] 吴其重,王自发,李丽娜,等.北京奥运会空气质量保障方案京津冀地区措施评估[J].气候与环境研究,2010,15(5):662-671. [3] 黄嫣旻,魏海萍,段玉森,等.上海世博会环境空气质量状况和原因分析[J].中国环境监测,2013,29(5):58-63. [4] 喻义勇,谢放尖,陆晓波,等.南京亚青会环境空气质量状况及原因分析[J].环境监控与预警,2014,6(1):5-9. [5] 孙峰,张大伟,董欣,等.基于环境监测数据的APEC会议空气质量保障环境改善效果评估[J].中国环境监测,2016,32(3):1-12. [6] 刘建国,谢品华,王跃思,等.APEC前后京津冀区域灰霾观测及控制措施评估[J].中国科学院院刊,2015,30(3):368-377. [7] GUO S,HU M,WANG Z B,et al.Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing:implication of regional secondary formation[J].Atmospheric Chemistry & Physics,10(3):947-959. [8] 周敏,陈长虹,乔利平,等.2013年1月中国中东部大气重污染期间上海颗粒物的污染特征[J].环境科学学报,2013,33(11):3118-3126. [9] 雷英杰.全民宅在家缘何重污染天气频发?一系列数据说出了真相:环境容量下降,污染物排放量未大幅减少[J].环境经济,2020(增刊2):24-25. [10] 张宝军,郎红梅,毕晶秀,等.唐山新冠肺炎防疫期间空气质量变化特征及污染成因分析[J].环境污染与防治,2020,42(8):1033-1038. [11] 余国忠,张迁,刘向春,等.新冠病毒肺炎疫情防控期间信阳市中心城区空气质量变化[J/OL].信阳师范学院学报(自然科学版):1-6[2020-09-09].http://kns.cnki.net/kcms/detail/41.1107.N.20200727.1131.012.html. [12] ZHU Y J,XIE J,XIE J H,et al.Association between short-term exposure to air pollution and COVID-19 infection:evidence from China[J].Science of the Total Environment,2020,727:138704. [13] WANG Q,SU M.A preliminary assessment of the impact of COVID-19 on environment:a case study of China[J].Science of the Total Environment,2020,728:138915. [14] LI L,LI Q,HUANG L,et al.Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region:an insight into the impact of human activity pattern changes on air pollution variation[J].Science of the Total Environment,2020,732:139282. [15] 上海市空气质量实时发布[EB/OL].http://www.semc.com.cn/aqi/SiteAQI/SiteAQI. [16] XU J,ZHANG Y H,ZHENG S Q,et al.Aerosol effects on ozone concentrations in Beijing:a model sensitivity study[J].Journal of Environmental Sciences,2012,24(4):645-656. [17] XING J,WANG J D,ROHIT M,et al.Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J].Atmospheric Chemistry and Physics,2017,17(16):9869-9883. [18] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778. [19] QU Y W,WANG T J,CAI Y F,et al.Influence of atmospheric particulate matter on ozone in Nanjing,China:observational study and mechanistic analysis[J].Advances in Atmospheric Sciences,35(11):1381-1395. [20] LYU X P,WANG N,GUO H,et al.Causes of a continuous summertime O3 pollution event in Jinan,a central city in the North China Plain[J].Atmospheric Chemistry and Physics,2019,19(5):3025-3042. [21] TAN Z F,LU K D,JIANG M Q,et al.Exploring ozone pollution in Chengdu,southwestern China:a case study from radical chemistry to O3-VOC-NOx sensitivity[J].Science of the Total Environment,2018,636:775-786. [22] WANG P F,GUO H,HU J L,et al.Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J].Science of the Total Environment,2019,662:297-306. [23] HUANG X,DING A J,GAO J,et al.Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China[J].National Science Review,2020,10.1093/nsr/nwaa137. [24] LU R Y.Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool[J].Journal of The Meteorological Society of Japan,2001,79:771-783. [25] JONES P D,HULME M.Calculating regional climatic time series for temperature and precipitation:methods and illustrations[J].International Journal of Climatology,1996,16:361-377. [26] 周永江,姚宜斌,熊永良,等.基于Spearman秩相关系数的PWV与PM2.5相关性研究[J].大地测量与地球动力学,2020,40(3):236-241. [27] 曹庭伟,吴锴,康平,等.成渝城市群臭氧污染特征及影响因素分析[J]环境科学学报.2018,38(4):1275-1284. [28] GUO H,WANG Y G,ZHANG H L.Characterization of criteria air pollutants in Beijing during 2014-2015[J].Environmental Research,2017,154:334-344. [29] DAS T,BARAL S S,SAHOO S K,et al.Aerosol physical characteristics at Bhubaneswar,East coast of India[J].Atmospheric Research,2009,93(4):897-901. [30] LI X L,HU X M,SHI S Y,et al.Spatiotemporal variations and regional transport of air pollutants in two urban agglomerations in northeast China Plain[J].Chinese Geographical Science,2019,29(6):917-933. [31] WANG T J,JIANG F,LI S,et al.Trends in air pollution during 1996-2003 and cross-border transport in city clusters over the Yangtze River Delta Region of China[J].Terrestrial Atmospheric and Oceanic Sciences,2007,18:995-1009. [32] STOHL A,ECKHARDT S,FORSTER C,et al.A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements[J].Atmospheric Environment,2002,36(29):4635-4648. [33] 郑龙飞,谢郁宁,刘强,等.南京地区2013年12月重霾污染事件成因分析[J].大气科学学报,2016,39(4):546-553. [34] 赵倩彪,胡鸣,张懿华.利用后向轨迹模式研究上海市PM2.5来源分布及传输特征[J].环境监测管理与技术,2014(4):22-27. [35] 殷丽娜,褚旸晰,段菁春,等."2+26"城市一次多因素叠加重污染过程的特征分析[J].环境科学研究,2019,32(12):2022-2030. [36] 庄国顺.大气气溶胶和雾霾新论[M].上海:上海科学技术出版社,2019:473-480.
点击查看大图
计量
- 文章访问数: 181
- HTML全文浏览量: 26
- PDF下载量: 8
- 被引次数: 0