STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)
-
摘要: 通过室内模拟实验,研究了生物合成锰氧化物(Bio-MnOx)材料对污染土壤中砷(As)的稳定化效果。结果表明:1)Bio-MnOx的加入能够有效降低砷的浸出量,其中水溶性砷含量由2.28 mg/kg降至0.86 mg/kg,减少62.3%;2)五步连续法浸提结果发现,Bio-MnOx处理后水溶态砷和表面吸附态砷的相对含量显著降低;3)风险分析进一步表明Bio-MnOx处理后砷的环境风险降低;4)基于细菌16s RNA生物多样性分析表明,经过Bio-MnOx处理后,土壤微生物多样性的丰富度显著增加;5)微生物群落结构分析发现,土壤微生物群落结构发生明显演替,属水平下的细菌结构由芽孢杆菌属向梭状芽孢菌属、丛毛单胞菌属、敏感梭菌属等转变。总体而言,Bio-MnOx是一种比较有效的修复砷污染土壤的生物材料。
-
关键词:
- 生物合成锰氧化物(Bio-MnOx) /
- 砷 /
- 污染土壤 /
- 稳定化
Abstract: Through indoor simulation experiments, the effect of biosynthetic manganese oxide (Bio-MnOx) material on the stabilization of arsenic (As) in contaminated soil was studied. The results showed that:1) the addition of Bio-MnOx could effectively decrease the leaching amount of As, in which the water-soluble As content decreased from 2.28 mg/kg to 0.86 mg/kg, with a reduction efficiency of 62.3%; 2) the five-step continuous extraction results showed that the content of water-soluble As and surface-adsorbed fraction decreased significantly after Bio-MnOx treatment; 3) the environmental risk analysis further confirmed that the risk of As decreased significantly after Bio-MnOx treatment; 4) bacterial biodiversity analysis based on 16s RNA indicated that the richness of soil microbial diversity increased significantly after Bio-MnOx treatment; 5) the analysis of microbial community structure showed that the dominant bacterial community structure changed from Bacillus to Clostridium, Comamonas, and Clostridium sensu tricto at the genus level. In general, Bio-MnOx could be used as an effective biogenic material to stabilize As in soils.-
Key words:
- Biological Mn oxide (Bio-MnOx) /
- arsenic /
- contaminated soil /
- stabilization
-
[1] HE Z F,ZHANG Q Y,WEI Z,et al.Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge[J].Water Research,2019,157:83-93. [2] RAI P K,LEE S S,ZHANG M,et al.Heavy metals in food crops:health risks,fate,mechanisms,and management[J].Environment International,2019,125:365-385. [3] ZHOU Y T,NIU L L,LIU K,et al.Arsenic in agricultural soils across China:distribution pattern,accumulation trend,influencing factors,and risk assessment[J].Science of the Total Environment,2018,616/617:156-163. [4] 郭军康,李艳萍,李永涛,等.采用草酸和EDTA去除农田土壤中砷和镉污染[J].环境工程,2019,37(5):70-75. [5] 李多松,赵强,王香莲.UV/H2O2对土壤中As(Ⅲ)氧化效果的初步研究[J].环境工程,2015,33(5):166-169,125. [6] 柳秀颖,黄永炳,王丽丽,等.钛改性锰矿的除砷效果及机理研究[J].环境工程,2011,29(6):46-49. [7] CHEN J,WANG J Y,ZHANG G S,et al.Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J].Chemical Engineering Journal,2018,334:1518-1526. [8] XU X W,CHEN C,WANG P,et al.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution,2017,231:37-47. [9] LI B Y,ZHOU S,WEI D N,et al.Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2:pot experiment and field application[J].Science of the Total Environment,2019,650:546-556. [10] BARGAR J R,FULLER C C,MARCUS M A,et al.Structural characterization of terrestrial microbial Mn oxides from Pinal Creek,AZ[J].Geochimica et Cosmochimica Acta,2009,73(4):889-910. [11] SPIRO T G,BARGAR J R,SPOSITO G,et al.Bacteriogenic manganese oxides[J].Accounts of Chemical Research,2010,43(1):2-9. [12] TEBO B M,JOHNSON H A,MCCARTHY J K,et al.Geomicrobiology of manganese(Ⅱ) oxidation[J].Trends in Microbiology,2005,13(9):421-428. [13] VILLALOBOS M,TONER B,BARGAR J,et al.Characterization of the manganese oxide produced by pseudomonas putida strain MnB1[J].Geochimaet Cosmochimica Acta,2003,67(14):2649-2662. [14] WEBB S M,TEBO B M,BARGAR J R.Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp.strain SG-1[J].American Mineralogist,2015,90(8/9):1342-1357. [15] MIYATA N,MARUO K,TANI Y,et al.Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles[J].Geomicrobiology Journal,2006,23(2):63-73. [16] WATANABE J I,TANI Y,CHANG J,et al.As(Ⅲ) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2[J].Chemical Geology,2013,347:227-232. [17] WANG H W,LV Z J,SONG Y,et al.Adsorptive removal of Sb(Ⅲ) from wastewater by environmentally-friendly biogenic manganese oxide (BMO) materials:efficiency and mechanisms[J].Process Safety and Environmental Protection,2019,124:223-230. [18] BAI Y H,YANG T T,LIANG J S,et al.The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J].Water Research,2016,98(7):119-127. [19] SHIOWATANA J,MCLAREN R G,CHANMEKHA N,et al.Fractionation of arsenic in soil by a continuous-flow sequential extraction method[J].Journal of Environmental Quality,2001,30(6):1940-1949. [20] 宋宜,王华伟,吴雅静,等.三价铁促进生物氧化锰稳定土壤砷的效果和机制[J].环境科学学报,2020,40(4):1460-1466. [21] 梁金松,柏耀辉,胡承志,等.锰生物氧化的研究进展及在水处理中的应用[J].应用与环境生物学报,2013,19(1):11-19. [22] WANG Y N,TSANG Y F,WANG H,et al.Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials[J].Environmental Pollution,2020,258:113481. [23] WANG H,ZHANG D,MOU S,et al.Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J].Chemosphere,2015,136:102-110. [24] 王建燕,张传巧,陈静,等.新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J].环境科学学报,2019,39(8):2575-2585. [25] 费杨,阎秀兰,廖晓勇,等.铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J].环境科学学报,2016,36(11):4164-4172. [26] CHEN X M,ZENG X C,WANG J N,et al.Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain,Central China[J].Science of the Total Environment,2017,579:989-999. [27] DAS S,LIU C C,JEAN J S,et al.Dissimilatory arsenate reduction and in situ microbial activities and diversity in arsenic-rich groundwater of Chianan plain,southwestern Taiwan[J].Microbial Ecology,2016,71(2):365-374. [28] 周爽,彭亮,雷鸣,等.纳米级二氧化锰材料阻控土壤砷向水稻迁移的研究[J].环境科学学报,2015,35(3):855-861.
点击查看大图
计量
- 文章访问数: 131
- HTML全文浏览量: 12
- PDF下载量: 1
- 被引次数: 0