CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳排放达峰期、平台期及下降期定量判断方法研究

张立 万昕 蒋含颖 李璇 徐少东 蔡博峰

张立, 万昕, 蒋含颖, 李璇, 徐少东, 蔡博峰. 二氧化碳排放达峰期、平台期及下降期定量判断方法研究[J]. 环境工程, 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
引用本文: 张立, 万昕, 蒋含颖, 李璇, 徐少东, 蔡博峰. 二氧化碳排放达峰期、平台期及下降期定量判断方法研究[J]. 环境工程, 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
Citation: ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001

二氧化碳排放达峰期、平台期及下降期定量判断方法研究

doi: 10.13205/j.hjgc.202110001
基金项目: 

中国工程院咨询研究项目"江西碳达峰与碳中和模式与实现路径研究"(2021-01JXZD-06)。

详细信息
    作者简介:

    张立(1992-),男,博士研究生,主要研究方向为温室气体达峰和空气质量达标。lizhang1122@g.ucla.edu

    通讯作者:

    蔡博峰(1977-),男,博士,研究员,主要研究方向为温室气体清单。caibf@caep.org.cn

QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD

  • 摘要: 基于Bootstrap数理统计方法,构建二氧化碳排放状态判断方法模型(evaluation model on the status of CO2 emissions,ESC)。选取排放统计基础较好的地区,利用权威机构的多源长时间序列数据,结合IPCC清单指南确定和分析二氧化碳排放数据的分布特征,包括标准差和不确定性范围(取95%置信区间),以此作为建立碳排放达峰期、平台期及下降期的定量判断的基础,解决因核算、计量方法的不同造成排放结果的误差。研究结果表明,达峰期判断需要以峰值排放量浮动1%(0.9%~1.1%)的范围为依据,若碳排放量满足条件,则认为处于达峰期;平台期和下降期则以达峰后排放量的连续多年的年均下降率与2%(1.8%~2.2%)比较,若碳达峰后排放量的年均下降率小于2%,则认为碳排放仍处于平台期,否则认为碳排放处于下降期。基于ESC模型对欧盟和美国的历史碳排放数据进行排放状态判断,结果显示,欧盟地区在1979年碳排放达峰后,在1980-1983年进入下降期。美国在2007年碳达峰后,在2008-2012年进入下降期。ESC模型的分析结果与2个地区的排放趋势呈高度一致,表明该模型可以作为国家、地区(省份)、城市CO2排放状态的定量判断方法,为碳排放路径分析和情景模拟研究提供重要支撑,为决策者提供科学的参考依据。
  • [1] CHINA NATIONAL DEVELOPMENT and REFORM COMMISSION of China's Intended Nationally Determined Contribution Document[EB/OL]. https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx.2015[2020-05-14].
    [2] 国务院. 国务院关于印发"十三五"控制温室气体排放工作方案的通知[EB/OL]. http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm.2016[2020-05-14].
    [3] 张立, 谢紫璇, 曹丽斌,等. 中国城市碳达峰评估方法初探[J]. 环境工程,2020:38(11):1-5

    ,43.
    [4] WRI. Mitigation Goal Standard.[EB/OL]. http://www.ghgprotocol.org/mitigation-goal-standard.2014.
    [5] C40. 27 Cities Have Reached Peak Greenhouse Gas Emissions whilst Populations Increase and Economies Grow[EB/OL]. https://www.c40.org/press_releases/27-cities-have-reached-peak-greenhouse-gas-emissions-whilst-populations-increase-and-economies-grow.20182020-05-14.
    [6] UNEP (United Nations Environment Programme). The Emissions Gap Report 2018[R]. Nairobi:UNEP, 2018[2021-05-14].https://www.unep.org/resources/emissions-gap-report-2018.
    [7] SU K, LEE C M. When will China achieve its carbon emission peak? A scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators,2020,112:106138.
    [8] 何建坤. CO2排放峰值分析:中国的减排目标与对策[J]. 中国人口资源与环境,2013,23(12):1-9.
    [9] TAPIO P. Towards a theory of decoupling:degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy,2005,12:137-151.
    [10] SHI C X. Decoupling analysis and peak prediction of carbon emission based on decoupling theory[J]. Sustainable Computing:Informatics and Systems,2020,28:100424.
    [11] LI H A, QIN Q D. Challenges for China's carbon emissions peaking in 2030:a decomposition and decoupling analysis[J]. Journal of Cleaner Production,2018,207:857-865.
    [12] SU Y Q, LIU X, JI J P, et al. Role of economic structural change in the peaking of China's CO2 emissions:an input-output optimization model[J]. Science of the Total Environment,2021,761:143306.
    [13] CUI C, WANG Z, CAI B F, et al. Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025[J]. Applied Energy,2021,281:116116.
    [14] WANG Z H, HUANG W J, CHEN Z F. The peak of CO2 emissions in China:a new approach using survival models[J]. Energy Economics,2019,81:1099-1108.
    [15] CHEN X, SHUAI C Y, WU Y, et al. Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors[J]. Science of the Total Environment,2019,709:135768.
    [16] DONG K Y, SUN R J, LI H, et al. Does natural gas consumption mitigate CO2 emissions:Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries[J]. Renewable and Sustainable Energy Reviews,2018,94:419-429.
    [17] SHEN L Y, WU Y, SHUAI C Y, et al. Analysis on the evolution of low carbon city from process characteristic perspective[J]. Journal of Cleaner Production,2018,187:348-360.
    [18] DES PARTICIPANTS LISTE. Good practice guidance and uncertainty management in national greenhouse gas inventories[EB/OL]. https://www.ipcc-nggip.iges.or.jp/public/gp/english/.2001.
    [19] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.2019.
    [20] 蒋含颖, 段祎然, 张哲,等. 基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展,2021,17(2):131-139.
    [21] EUROPEAN ENVIRONMENT AGENCY. National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism[EB/OL]. https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16.2020.
    [22] WORLD BANK. World Development Indicators[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021.
    [23] INTEGRATED CARBON OBSERVATION SYSTEM. Data supplement to the Global Carbon Budget 2020[EB/OL]. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020.2020.
    [24] INTERNATIONAL ENERGY AGENCY IEA. Emissions from Fuel Combustion[EB/OL]. http://wds.iea.org/wds/pdf/Worldco2_Documentation.pdf.2020.
    [25] BRITISH PETROLEUM. Statistical Review of World Energy[EB/OL]. http://www.bp.com/statisticalreview.2021.
    [26] EUROPEAN COMMISSION. Emissions Database for Global Atmospheric Research[EB/OL]. https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020.2020.
    [27] CLIMATE WATCH. Data Explorer-historical emissions[EB/OL]. https://www.climatewatchdata.org/data-explorer/historical-emissions?historical-emissions-data-sources=cait&historical-emissions-end_year=2018&historical-emissions-gases=co2&historical-emissions-regions=All%20Selected%2CCHN&historical-emissions-sectors=total-excluding-lucf&historical-emissions-start_year=1990&page=1.2020.
    [28] OUR WORLD IN DATA. United States:CO2 Country Profile[EB/OL]. https://ourworldindata.org/co2/country/united-states?country=~USA. 2020.
    [29] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Greenhouse Gas Inventory Data Explorer[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021.
    [30] U.S. ENERGY INFORMATION ADMINISTRATION. U.S. Energy-Related Carbon Dioxide Emissions, 2019[EB/OL]. https://www.eia.gov/environment/emissions/carbon/.2021.
    [31] EFRON B. Bootstrap Methods:another Look at the Jackknife[J]. The Annals of Statistics,1979,7:1-26.
    [32] CHERNICK M R. Bootstrap Methods:A Guide for Practitioners and Researchers[M]. USA:John Wiley & Sons, Inc, 2011.
    [33] HONG M, HWANG E. Bootstrap inference for network vector autoregression in large-scale social network[J]. Journal of the Korean Statistical Society,2021,4:1-21.
    [34] IIZUMI T, TAKAYABU I, DAIRAKU K, et al. Future change of daily precipitation indices in Japan:a stochastic weather generator-based bootstrap approach to provide probabilistic climate information[J]. Journal of Geophysical Research,2012,117(D11).
    [35] KOKIC P, JIN H, CRIMP S. Improved point scale climate projections using a block bootstrap simulation and quantile matching method[J]. Climate Dynamics,2013,41(3/4):853-866.
    [36] YURTKURAN S. The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey:a Bootstrap ARDL Approach[J]. Renewable Energy,2021,171:1236-1245.
    [37] YILANCI V, HAOUAS I, OZGUR O, et al. Energy diversification and economic development in emergent countries:evidence from fourier function-driven bootstrap panel causality test[J]. Frontiers in Energy Research,2021,9:95.
    [38] TONG T, ORTIZ J, XU C, et al. Economic growth, energy consumption, and carbon dioxide emissions in the E7 countries:a bootstrap ARDL bound test[J]. Energy, Sustainability and Society,2020,10(1):1-17.
    [39] CHAABOUNI S. China's regional tourism efficiency:a two-stage double bootstrap data envelopment analysis[J]. Journal of Destination Marketing & Management,2019,11:183-191.
    [40] PARRELLA M L, ALBANO G, PERNA C, et al. Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets[J]. Computational Statistics,2021:1-22.
    [41] MARINHO A, ARAU'JO C A S. Using data envelopment analysis and the bootstrap method to evaluate organ transplantation efficiency in Brazil[J]. Health Care Management Science,2021,24:569-581.
    [42] SONG M L, ZHANG L L, LIU W, et al. Bootstrap-DEA analysis of BRICS' energy efficiency based on small sample data[J]. Applied Energy,2013,112:1049-1055.
    [43] TIAN W, SONG J T, LI Z Y, et al. Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis[J]. Applied Energy,2014,135:320-328.
    [44] DUAN N, GUO J P, XIE B C. Is there a difference between the energy and CO2 emission performance for China's thermal power industry? A bootstrapped directional distance function approach[J]. Applied Energy-Barking Then Oxford-,2016,162(1):1552-1563.
  • 加载中
计量
  • 文章访问数:  331
  • HTML全文浏览量:  47
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回