QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD
-
摘要: 基于Bootstrap数理统计方法,构建二氧化碳排放状态判断方法模型(evaluation model on the status of CO2 emissions,ESC)。选取排放统计基础较好的地区,利用权威机构的多源长时间序列数据,结合IPCC清单指南确定和分析二氧化碳排放数据的分布特征,包括标准差和不确定性范围(取95%置信区间),以此作为建立碳排放达峰期、平台期及下降期的定量判断的基础,解决因核算、计量方法的不同造成排放结果的误差。研究结果表明,达峰期判断需要以峰值排放量浮动1%(0.9%~1.1%)的范围为依据,若碳排放量满足条件,则认为处于达峰期;平台期和下降期则以达峰后排放量的连续多年的年均下降率与2%(1.8%~2.2%)比较,若碳达峰后排放量的年均下降率小于2%,则认为碳排放仍处于平台期,否则认为碳排放处于下降期。基于ESC模型对欧盟和美国的历史碳排放数据进行排放状态判断,结果显示,欧盟地区在1979年碳排放达峰后,在1980-1983年进入下降期。美国在2007年碳达峰后,在2008-2012年进入下降期。ESC模型的分析结果与2个地区的排放趋势呈高度一致,表明该模型可以作为国家、地区(省份)、城市CO2排放状态的定量判断方法,为碳排放路径分析和情景模拟研究提供重要支撑,为决策者提供科学的参考依据。Abstract: Based on mathematical statistics methods of Bootstrap sampling, we constructed an Evaluation model on the Status of CO2 emissions (ESC). This paper selected the areas with a good statistical basis, used multi-source time series data from the authorities, and combined with the emission uncertainty by referring to the IPCC Guidelines for national greenhouse gas inventories to explore the CO2 emission distribution and statistical parameters, which included the standard deviation and uncertainty of the emission. The statistical parameters were used as a quantitative criterion to determine the peak, plateau, and decline period of CO2 emission and solve the calculation errors caused by statistical accounting. Based on the ESC model, the peak period was within 1% (0.9%~1.1%) of peak CO2 emission. The plateau and decline period were evaluated based on the comparison between the annual decline rate and 2% (1.8%~2.2%). Once the annual decline rate after the CO2 emission peak exceeded 2%, we assumed the CO2 emission to be the decline period, otherwise the plateau period. Besides, we applied the ESC model to evaluate the periods of historical CO2 emission for the European Union and the United States. The results showed that:the European Union reached the CO2 emission peak in 1979, then entered the decline period from 1980 to 1983; the United States reached the CO2 emission peak in 2007, then entered the decline period of CO2 emission from 2008 to 2012; our model was reasonable on quantitative evaluation on the status of CO2 emission peak. This study could provide reference value for quantitative evaluation on the status of CO2 emission (including the peak, plateau, and decline period) for the country, region (province), or the city, provide sound support for studies on the pathway analysis and scenario simulation of CO2 emission, and offer scientific evaluation reference for decision makers.
-
Key words:
- CO2 /
- emission status /
- peak period /
- plateau period /
- decline period /
- quantitative evaluation
-
[1] CHINA NATIONAL DEVELOPMENT and REFORM COMMISSION of China's Intended Nationally Determined Contribution Document[EB/OL]. https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx.2015[2020-05-14]. [2] 国务院. 国务院关于印发"十三五"控制温室气体排放工作方案的通知[EB/OL]. http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm.2016[2020-05-14]. [3] 张立, 谢紫璇, 曹丽斌,等. 中国城市碳达峰评估方法初探[J]. 环境工程,2020:38(11):1-5,43. [4] WRI. Mitigation Goal Standard.[EB/OL]. http://www.ghgprotocol.org/mitigation-goal-standard.2014. [5] C40. 27 Cities Have Reached Peak Greenhouse Gas Emissions whilst Populations Increase and Economies Grow[EB/OL]. https://www.c40.org/press_releases/27-cities-have-reached-peak-greenhouse-gas-emissions-whilst-populations-increase-and-economies-grow.20182020-05-14. [6] UNEP (United Nations Environment Programme). The Emissions Gap Report 2018[R]. Nairobi:UNEP, 2018[2021-05-14].https://www.unep.org/resources/emissions-gap-report-2018. [7] SU K, LEE C M. When will China achieve its carbon emission peak? A scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators,2020,112:106138. [8] 何建坤. CO2排放峰值分析:中国的减排目标与对策[J]. 中国人口资源与环境,2013,23(12):1-9. [9] TAPIO P. Towards a theory of decoupling:degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy,2005,12:137-151. [10] SHI C X. Decoupling analysis and peak prediction of carbon emission based on decoupling theory[J]. Sustainable Computing:Informatics and Systems,2020,28:100424. [11] LI H A, QIN Q D. Challenges for China's carbon emissions peaking in 2030:a decomposition and decoupling analysis[J]. Journal of Cleaner Production,2018,207:857-865. [12] SU Y Q, LIU X, JI J P, et al. Role of economic structural change in the peaking of China's CO2 emissions:an input-output optimization model[J]. Science of the Total Environment,2021,761:143306. [13] CUI C, WANG Z, CAI B F, et al. Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025[J]. Applied Energy,2021,281:116116. [14] WANG Z H, HUANG W J, CHEN Z F. The peak of CO2 emissions in China:a new approach using survival models[J]. Energy Economics,2019,81:1099-1108. [15] CHEN X, SHUAI C Y, WU Y, et al. Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors[J]. Science of the Total Environment,2019,709:135768. [16] DONG K Y, SUN R J, LI H, et al. Does natural gas consumption mitigate CO2 emissions:Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries[J]. Renewable and Sustainable Energy Reviews,2018,94:419-429. [17] SHEN L Y, WU Y, SHUAI C Y, et al. Analysis on the evolution of low carbon city from process characteristic perspective[J]. Journal of Cleaner Production,2018,187:348-360. [18] DES PARTICIPANTS LISTE. Good practice guidance and uncertainty management in national greenhouse gas inventories[EB/OL]. https://www.ipcc-nggip.iges.or.jp/public/gp/english/.2001. [19] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.2019. [20] 蒋含颖, 段祎然, 张哲,等. 基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展,2021,17(2):131-139. [21] EUROPEAN ENVIRONMENT AGENCY. National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism[EB/OL]. https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16.2020. [22] WORLD BANK. World Development Indicators[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021. [23] INTEGRATED CARBON OBSERVATION SYSTEM. Data supplement to the Global Carbon Budget 2020[EB/OL]. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020.2020. [24] INTERNATIONAL ENERGY AGENCY IEA. Emissions from Fuel Combustion[EB/OL]. http://wds.iea.org/wds/pdf/Worldco2_Documentation.pdf.2020. [25] BRITISH PETROLEUM. Statistical Review of World Energy[EB/OL]. http://www.bp.com/statisticalreview.2021. [26] EUROPEAN COMMISSION. Emissions Database for Global Atmospheric Research[EB/OL]. https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020.2020. [27] CLIMATE WATCH. Data Explorer-historical emissions[EB/OL]. https://www.climatewatchdata.org/data-explorer/historical-emissions?historical-emissions-data-sources=cait&historical-emissions-end_year=2018&historical-emissions-gases=co2&historical-emissions-regions=All%20Selected%2CCHN&historical-emissions-sectors=total-excluding-lucf&historical-emissions-start_year=1990&page=1.2020. [28] OUR WORLD IN DATA. United States:CO2 Country Profile[EB/OL]. https://ourworldindata.org/co2/country/united-states?country=~USA. 2020. [29] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Greenhouse Gas Inventory Data Explorer[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021. [30] U.S. ENERGY INFORMATION ADMINISTRATION. U.S. Energy-Related Carbon Dioxide Emissions, 2019[EB/OL]. https://www.eia.gov/environment/emissions/carbon/.2021. [31] EFRON B. Bootstrap Methods:another Look at the Jackknife[J]. The Annals of Statistics,1979,7:1-26. [32] CHERNICK M R. Bootstrap Methods:A Guide for Practitioners and Researchers[M]. USA:John Wiley & Sons, Inc, 2011. [33] HONG M, HWANG E. Bootstrap inference for network vector autoregression in large-scale social network[J]. Journal of the Korean Statistical Society,2021,4:1-21. [34] IIZUMI T, TAKAYABU I, DAIRAKU K, et al. Future change of daily precipitation indices in Japan:a stochastic weather generator-based bootstrap approach to provide probabilistic climate information[J]. Journal of Geophysical Research,2012,117(D11). [35] KOKIC P, JIN H, CRIMP S. Improved point scale climate projections using a block bootstrap simulation and quantile matching method[J]. Climate Dynamics,2013,41(3/4):853-866. [36] YURTKURAN S. The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey:a Bootstrap ARDL Approach[J]. Renewable Energy,2021,171:1236-1245. [37] YILANCI V, HAOUAS I, OZGUR O, et al. Energy diversification and economic development in emergent countries:evidence from fourier function-driven bootstrap panel causality test[J]. Frontiers in Energy Research,2021,9:95. [38] TONG T, ORTIZ J, XU C, et al. Economic growth, energy consumption, and carbon dioxide emissions in the E7 countries:a bootstrap ARDL bound test[J]. Energy, Sustainability and Society,2020,10(1):1-17. [39] CHAABOUNI S. China's regional tourism efficiency:a two-stage double bootstrap data envelopment analysis[J]. Journal of Destination Marketing & Management,2019,11:183-191. [40] PARRELLA M L, ALBANO G, PERNA C, et al. Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets[J]. Computational Statistics,2021:1-22. [41] MARINHO A, ARAU'JO C A S. Using data envelopment analysis and the bootstrap method to evaluate organ transplantation efficiency in Brazil[J]. Health Care Management Science,2021,24:569-581. [42] SONG M L, ZHANG L L, LIU W, et al. Bootstrap-DEA analysis of BRICS' energy efficiency based on small sample data[J]. Applied Energy,2013,112:1049-1055. [43] TIAN W, SONG J T, LI Z Y, et al. Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis[J]. Applied Energy,2014,135:320-328. [44] DUAN N, GUO J P, XIE B C. Is there a difference between the energy and CO2 emission performance for China's thermal power industry? A bootstrapped directional distance function approach[J]. Applied Energy-Barking Then Oxford-,2016,162(1):1552-1563.
点击查看大图
计量
- 文章访问数: 331
- HTML全文浏览量: 47
- PDF下载量: 18
- 被引次数: 0