中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳排放达峰期、平台期及下降期定量判断方法研究

张立 万昕 蒋含颖 李璇 徐少东 蔡博峰

张立, 万昕, 蒋含颖, 李璇, 徐少东, 蔡博峰. 二氧化碳排放达峰期、平台期及下降期定量判断方法研究[J]. 环境工程, 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
引用本文: 张立, 万昕, 蒋含颖, 李璇, 徐少东, 蔡博峰. 二氧化碳排放达峰期、平台期及下降期定量判断方法研究[J]. 环境工程, 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001
Citation: ZHANG Li, WAN Xin, JIANG Han-ying, LI Xuan, XU Shao-dong, CAI Bo-feng. QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 1-7. doi: 10.13205/j.hjgc.202110001

二氧化碳排放达峰期、平台期及下降期定量判断方法研究

doi: 10.13205/j.hjgc.202110001
基金项目: 

中国工程院咨询研究项目"江西碳达峰与碳中和模式与实现路径研究"(2021-01JXZD-06)。

详细信息
    作者简介:

    张立(1992-),男,博士研究生,主要研究方向为温室气体达峰和空气质量达标。lizhang1122@g.ucla.edu

    通讯作者:

    蔡博峰(1977-),男,博士,研究员,主要研究方向为温室气体清单。caibf@caep.org.cn

QUANTITATIVE EVALUATION ON THE STATUS OF CO2 EMISSIONS: PEAK PERIOD, PLATEAU PERIOD, AND DECLINE PERIOD

  • 摘要: 基于Bootstrap数理统计方法,构建二氧化碳排放状态判断方法模型(evaluation model on the status of CO2 emissions,ESC)。选取排放统计基础较好的地区,利用权威机构的多源长时间序列数据,结合IPCC清单指南确定和分析二氧化碳排放数据的分布特征,包括标准差和不确定性范围(取95%置信区间),以此作为建立碳排放达峰期、平台期及下降期的定量判断的基础,解决因核算、计量方法的不同造成排放结果的误差。研究结果表明,达峰期判断需要以峰值排放量浮动1%(0.9%~1.1%)的范围为依据,若碳排放量满足条件,则认为处于达峰期;平台期和下降期则以达峰后排放量的连续多年的年均下降率与2%(1.8%~2.2%)比较,若碳达峰后排放量的年均下降率小于2%,则认为碳排放仍处于平台期,否则认为碳排放处于下降期。基于ESC模型对欧盟和美国的历史碳排放数据进行排放状态判断,结果显示,欧盟地区在1979年碳排放达峰后,在1980-1983年进入下降期。美国在2007年碳达峰后,在2008-2012年进入下降期。ESC模型的分析结果与2个地区的排放趋势呈高度一致,表明该模型可以作为国家、地区(省份)、城市CO2排放状态的定量判断方法,为碳排放路径分析和情景模拟研究提供重要支撑,为决策者提供科学的参考依据。
  • [1] CHINA NATIONAL DEVELOPMENT and REFORM COMMISSION of China's Intended Nationally Determined Contribution Document[EB/OL]. https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx.2015[2020-05-14].
    [2] 国务院. 国务院关于印发"十三五"控制温室气体排放工作方案的通知[EB/OL]. http://www.gov.cn/zhengce/content/2016-11/04/content_5128619.htm.2016[2020-05-14].
    [3] 张立, 谢紫璇, 曹丽斌,等. 中国城市碳达峰评估方法初探[J]. 环境工程,2020:38(11):1-5

    ,43.
    [4] WRI. Mitigation Goal Standard.[EB/OL]. http://www.ghgprotocol.org/mitigation-goal-standard.2014.
    [5] C40. 27 Cities Have Reached Peak Greenhouse Gas Emissions whilst Populations Increase and Economies Grow[EB/OL]. https://www.c40.org/press_releases/27-cities-have-reached-peak-greenhouse-gas-emissions-whilst-populations-increase-and-economies-grow.20182020-05-14.
    [6] UNEP (United Nations Environment Programme). The Emissions Gap Report 2018[R]. Nairobi:UNEP, 2018[2021-05-14].https://www.unep.org/resources/emissions-gap-report-2018.
    [7] SU K, LEE C M. When will China achieve its carbon emission peak? A scenario analysis based on optimal control and the STIRPAT model[J]. Ecological Indicators,2020,112:106138.
    [8] 何建坤. CO2排放峰值分析:中国的减排目标与对策[J]. 中国人口资源与环境,2013,23(12):1-9.
    [9] TAPIO P. Towards a theory of decoupling:degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy,2005,12:137-151.
    [10] SHI C X. Decoupling analysis and peak prediction of carbon emission based on decoupling theory[J]. Sustainable Computing:Informatics and Systems,2020,28:100424.
    [11] LI H A, QIN Q D. Challenges for China's carbon emissions peaking in 2030:a decomposition and decoupling analysis[J]. Journal of Cleaner Production,2018,207:857-865.
    [12] SU Y Q, LIU X, JI J P, et al. Role of economic structural change in the peaking of China's CO2 emissions:an input-output optimization model[J]. Science of the Total Environment,2021,761:143306.
    [13] CUI C, WANG Z, CAI B F, et al. Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025[J]. Applied Energy,2021,281:116116.
    [14] WANG Z H, HUANG W J, CHEN Z F. The peak of CO2 emissions in China:a new approach using survival models[J]. Energy Economics,2019,81:1099-1108.
    [15] CHEN X, SHUAI C Y, WU Y, et al. Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors[J]. Science of the Total Environment,2019,709:135768.
    [16] DONG K Y, SUN R J, LI H, et al. Does natural gas consumption mitigate CO2 emissions:Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries[J]. Renewable and Sustainable Energy Reviews,2018,94:419-429.
    [17] SHEN L Y, WU Y, SHUAI C Y, et al. Analysis on the evolution of low carbon city from process characteristic perspective[J]. Journal of Cleaner Production,2018,187:348-360.
    [18] DES PARTICIPANTS LISTE. Good practice guidance and uncertainty management in national greenhouse gas inventories[EB/OL]. https://www.ipcc-nggip.iges.or.jp/public/gp/english/.2001.
    [19] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL]. https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.2019.
    [20] 蒋含颖, 段祎然, 张哲,等. 基于统计学的中国典型大城市CO2排放达峰研究[J]. 气候变化研究进展,2021,17(2):131-139.
    [21] EUROPEAN ENVIRONMENT AGENCY. National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism[EB/OL]. https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-16.2020.
    [22] WORLD BANK. World Development Indicators[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021.
    [23] INTEGRATED CARBON OBSERVATION SYSTEM. Data supplement to the Global Carbon Budget 2020[EB/OL]. https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020.2020.
    [24] INTERNATIONAL ENERGY AGENCY IEA. Emissions from Fuel Combustion[EB/OL]. http://wds.iea.org/wds/pdf/Worldco2_Documentation.pdf.2020.
    [25] BRITISH PETROLEUM. Statistical Review of World Energy[EB/OL]. http://www.bp.com/statisticalreview.2021.
    [26] EUROPEAN COMMISSION. Emissions Database for Global Atmospheric Research[EB/OL]. https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020.2020.
    [27] CLIMATE WATCH. Data Explorer-historical emissions[EB/OL]. https://www.climatewatchdata.org/data-explorer/historical-emissions?historical-emissions-data-sources=cait&historical-emissions-end_year=2018&historical-emissions-gases=co2&historical-emissions-regions=All%20Selected%2CCHN&historical-emissions-sectors=total-excluding-lucf&historical-emissions-start_year=1990&page=1.2020.
    [28] OUR WORLD IN DATA. United States:CO2 Country Profile[EB/OL]. https://ourworldindata.org/co2/country/united-states?country=~USA. 2020.
    [29] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Greenhouse Gas Inventory Data Explorer[EB/OL]. https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iallsectors/carbondioxide/inventsect/all.2021.
    [30] U.S. ENERGY INFORMATION ADMINISTRATION. U.S. Energy-Related Carbon Dioxide Emissions, 2019[EB/OL]. https://www.eia.gov/environment/emissions/carbon/.2021.
    [31] EFRON B. Bootstrap Methods:another Look at the Jackknife[J]. The Annals of Statistics,1979,7:1-26.
    [32] CHERNICK M R. Bootstrap Methods:A Guide for Practitioners and Researchers[M]. USA:John Wiley & Sons, Inc, 2011.
    [33] HONG M, HWANG E. Bootstrap inference for network vector autoregression in large-scale social network[J]. Journal of the Korean Statistical Society,2021,4:1-21.
    [34] IIZUMI T, TAKAYABU I, DAIRAKU K, et al. Future change of daily precipitation indices in Japan:a stochastic weather generator-based bootstrap approach to provide probabilistic climate information[J]. Journal of Geophysical Research,2012,117(D11).
    [35] KOKIC P, JIN H, CRIMP S. Improved point scale climate projections using a block bootstrap simulation and quantile matching method[J]. Climate Dynamics,2013,41(3/4):853-866.
    [36] YURTKURAN S. The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey:a Bootstrap ARDL Approach[J]. Renewable Energy,2021,171:1236-1245.
    [37] YILANCI V, HAOUAS I, OZGUR O, et al. Energy diversification and economic development in emergent countries:evidence from fourier function-driven bootstrap panel causality test[J]. Frontiers in Energy Research,2021,9:95.
    [38] TONG T, ORTIZ J, XU C, et al. Economic growth, energy consumption, and carbon dioxide emissions in the E7 countries:a bootstrap ARDL bound test[J]. Energy, Sustainability and Society,2020,10(1):1-17.
    [39] CHAABOUNI S. China's regional tourism efficiency:a two-stage double bootstrap data envelopment analysis[J]. Journal of Destination Marketing & Management,2019,11:183-191.
    [40] PARRELLA M L, ALBANO G, PERNA C, et al. Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets[J]. Computational Statistics,2021:1-22.
    [41] MARINHO A, ARAU'JO C A S. Using data envelopment analysis and the bootstrap method to evaluate organ transplantation efficiency in Brazil[J]. Health Care Management Science,2021,24:569-581.
    [42] SONG M L, ZHANG L L, LIU W, et al. Bootstrap-DEA analysis of BRICS' energy efficiency based on small sample data[J]. Applied Energy,2013,112:1049-1055.
    [43] TIAN W, SONG J T, LI Z Y, et al. Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis[J]. Applied Energy,2014,135:320-328.
    [44] DUAN N, GUO J P, XIE B C. Is there a difference between the energy and CO2 emission performance for China's thermal power industry? A bootstrapped directional distance function approach[J]. Applied Energy-Barking Then Oxford-,2016,162(1):1552-1563.
  • 加载中
计量
  • 文章访问数:  293
  • HTML全文浏览量:  46
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回