RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY
-
摘要: 在"双碳"目标提出的背景下,电力行业作为首要的碳排放行业,将承担起更大的减排份额及减排责任。筛选了13种电力行业的关键减排技术,评估并比较了各减排技术在碳达峰年前后的减排潜力及减排成本的变化趋势,以每5年为1个时间节点,对边际碳减排成本曲线进行分析,最终从技术选择的角度确定电力行业情景年的最优减排成本方案。结果表明:筛选的13种电力行业技术在2020,2025,2030,2035年的总碳减排潜力为4.7亿,7.0亿,5.0亿,5.4亿t,对应平均碳减排成本为8,67,242,464元/t。其中,2020年技术的边际减排成本为-295~376元/t。从技术类型而言,各项减排技术在边际减排成本曲线(MACC)上表现出特异性,相较于系统灵活性提升和技术升级改造,电源结构优化具有更高的碳减排潜力及更低的碳减排成本。研究为电力行业在选择最优减排技术方案时提供了成本角度的数据参考。Abstract: Under the background of the proposed Double Carbon goal, the power industry, as the primary carbon emission industry, will assume a greater share and responsibility of emission reduction. The paper selected 13 key low-carbon technology of power industry to evaluate and compare the trends of carbon abatement potential and corresponding cost during the process of peaking carbondioxide emissions. Taking every 5 years as a period, the marginal abatement cost curve (MACC) was analyzed, and the technology-based and cost-optimal carbon abatement plan for power industry in each selected year was offered. The results showed that the total carbon abatement potential of the 13 selected technologies in 2020, 2025, 2030 and 2035 were 470 million, 700 million, 500 million and 540 million tons, respectively. The corresponding average carbon abatement cost were 8,67,242,464 yuan/ton in each year. While, the marginal abatement cost of selected technologies in 2020 ranged from -295 yuan/ton to 376 yuan/ton. In terms of technology types, every technology showed specificity on the MACC. Compared with system flexibility and technology upgrading, power structure optimization had higher carbon abatement potential and lower carbon abatement cost. This paper can provide data support to select the low-carbon technology-based and cost-optimal plan in the power industry.
-
Key words:
- power industry /
- carbon peak /
- abatement technology /
- marginal abatement cost curve
-
[1] IPCC. Intergovernmental Panel for Climate Change Fifth Assessment Report[R].2013. [2] 巢清尘, 张永香, 高翔, 等. 巴黎协定:全球气候治理的新起点[J]. 气候变化研究进展, 2016,12(1):61-67. [3] 刘振民. 全球气候治理中的中国贡献[J]. 求是, 2016(7):56-58. [4] 何永贵, 于江浩. 基于STIRPAT模型的我国碳排放和产业结构优化研究[J]. 环境工程, 2018,36(7):174-178. [5] 张立, 谢紫璇, 曹丽斌, 等. 中国城市碳达峰评估方法初探[J]. 环境工程, 2020,38(11):1-5,43. [6] 臧宏宽, 杨威杉, 张静, 等. 京津冀城市群二氧化碳排放达峰研究[J]. 环境工程, 2020,38(11):19-24. [7] IEA. CO2 Emissions from electricity and heat by energy resource in 2018[EB/OL]. https://www.iea.org/data-and-statistics/data-browser?country=CHINAREG&fuel=CO2%20emissions&indicator=TotCO2. [8] 朱东山, 孔英, 高一放, 等. 中国发电行业CO2减排成本及潜力研究[J]. 中国人口·资源与环境, 2015,25(增刊2):14-20. [9] 洪永远, 李薇, 包哲, 等. 发电行业碳排放先进值研究:以武汉市为例[J]. 环境工程, 2018,36(4):181-185. [10] NAUCLÉR T E P. Pathways to a low-carbon economy:version 2 of the global greenhouse gas abatement cost curve report[R].2009. [11] ENKVIST P A, NAUCLER T, ROSANDER J. A cost curve for greenhouse gas reduction (cover story)[J]. Mckinsey Quarterly, 2007. [12] VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energ Policy, 2014,66:645-653. [13] YAO X, ZHOU H C, ZHANG A Z, et al. Regional energy efficiency, carbon emission performance and technology gaps in China:a meta-frontier non-radial directional distance function analysis[J]. Energ Policy, 2015,84:142-154. [14] 吴力波, 钱浩祺, 汤维祺. 基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J]. 经济研究, 2014,49(9):48-61. [15] KLEPPER G, PETERSON S. Marginal abatement cost curves in general equilibrium:the influence of world energy prices[J]. Resour Energy Econ, 2006,28(1):1-23. [16] WEI C, NI J L, DU L M. Regional allocation of carbon dioxide abatement in China[J]. China Econmic Review, 2012,23(3):552-565. [17] XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energ Policy, 2014,69:92-105. [18] 张利娜, 李新创, 李冰, 等. 基于钢铁企业的技术碳减排成本计算方法研究及应用[J]. 冶金能源, 2020,39(4):3-7. [19] CAO Q R, KANG W, SAJID M J, et al. Research on the optimization of carbon abatement efficiency in China on the basis of task allocation[J]. Journal of Cleaner Production, 2021,299:126912. [20] ZHOU Z B, LIU C J, ZENG X W, et al. Carbon emission performance evaluation and allocation in Chinese cities[J]. Journal of Cleaner Production, 2018,172:1254-1272. [21] WANG Z H, HE W J. CO2 emissions efficiency and marginal abatement costs of the regional transportation sectors in China[J]. Transportation Research Part D:Transport and Environment, 2017,50:83-97. [22] CAI W J, WANG C, CHEN J N, et al. Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020[J]. Energ Policy, 2008,36(3):1181-1194. [23] 顾阿伦, 史宵鸣, 汪澜, 等. 中国水泥行业节能减排的潜力与成本分析[J]. 中国人口·资源与环境, 2012,22(8):16-21. [24] IEA. Projected Costs of Generating[R].2020. [25] IRENA. Renewable Power Generation Costs in 2019[R].2019. [26] 中国电力企业联合会. 中国电力行业年度发展报告2020[R].2020. [27] YUAN J H, NA C N, LEI Q, et al. Coal use for power generation in China[J]. Resources, Conservation and Recycling, 2018,129:443-453. [28] 生态环境部. 2019年度中国区域电网二氧化碳基准线排放因子BM计算说明[R].2019. [29] CHEN L J, FANG Z H, XIE F, et al. Technology-side carbon abatement cost curves for China's power generation sector[J]. Mitig Adapt StratGl, 2020,25(7SI):1305-1323. [30] GE通用电气公司. 2025中国风电度电成本白皮书[R].2016. [31] 秦海欣. 我国高温气冷堆核电站的成本研究[D]. 衡阳:南华大学, 2013.
点击查看大图
计量
- 文章访问数: 653
- HTML全文浏览量: 69
- PDF下载量: 36
- 被引次数: 0