MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA
-
摘要: 为降低水泥行业碳减排成本,确定最优碳减排技术路径,研究基于经济-能源模型,核算中国水泥行业最新碳减排技术的边际减排成本,使用情景分析方法,研究了与未实施减排技术相比,2020年17项技术的碳减排潜力,并将其作为基准情景,和2025,2030,2035年3个未来情景的碳减排潜力作比较,从而得出不同情景下的边际减排成本曲线。结果表明:1)2020年我国水泥行业17项减排技术的平均减排成本为124元/tCO2,2020年实现总减排量3043万t,总减排成本为10.3亿元;在保持技术水平和排放水平不变的情况下,2035年17项减排技术可实现总减排量21307万t,总减排成本为103.4亿元。2)在各项减排技术中,集成模块化窑衬节能技术与水泥熟料烧成系统优化技术,具有较高减排潜力和较低减排成本,适合广泛推广;CO2捕集利用与封存(CCUS)技术虽具有较高减排成本,但是未来减排潜力较大,应给予重视。3)技术普及率与熟料产量是决定减排潜力的重要因素,因此未来水泥行业应注重节能减排政策技术推广与产业结构调整,可进一步实现减排目标。Abstract: In order to reduce the carbon emission abatement cost of cement industry and determine the optimal carbon emission reduction technology path, based on the economic-energy model, we calculated the marginal abatement cost of the latest carbon emission reduction technology in China's cement industry in this paper. Using scenario analysis method to study the future emission reduction potential of 17 technologies implemented in 2020, compared with the non-implemented technologies, we took them as the benchmark scenario and compare them to carbon emission reduction potentials of the three future scenarios in 2025, 2030 and 2035 to obtain the different marginal emission reduction cost curves. The results showed that:1) the average abatement cost of 17 technologies in China's cement industry was 124 yuan/tCO2 in 2020. The total emission reduction was 30.4 million tons in 2020, and the total abatement cost was 1.03 billion yuan; for maintaining the same level of technology and emission, in 2035, the total emission reduction of 17 technologies will be 213.07 million tons, and the total abatement cost will be 10.34 billion yuan. 2) among the emission abatement technologies, the energy saving technology of integrated modular kiln lining and optimization technology of cement clinker firing system had higher emission reduction potential and lower abatement cost. Although carbon capture, use and storage technology had higher abatement cost, it had greater potential for future emission reductions. 3) technology penetration rate and clinker outputs were important factors in determining emission reduction potential. Therefore, in the future, the cement industry should pay attention to energy conservation and emission reduction policies, technology promotion and industrial structure adjustment, so as to further achieve the emission reduction target.
-
[1] 李晟.高质量发展视角下产业结构升级对我国碳减排的影响[J].可持续发展,2021,11(1):149-159. [2] 国务院.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[J]. 北京:新华社,2020[09-22]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. [3] CHEN W, HONG J L, XU C Q. Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement[J]. Journal of Cleaner Production, 2015, 103:61-69. [04] . https://webstore.iea.org/technologyroadmap-low-carbon-transition-in-the-cement-industry. [4] 丁美荣.水泥行业碳排放现状分析与减排关键路径探讨[EB/OL].北京:数字水泥网,2021[06-10],http://www.dcement.com/article/202106/181005.html. [5] LIU Z, CIAIS P, DENG Z, et al. Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production[J]. Scientific Data, 2020, 7:392. [6] 刘大钧,汪家权.新形势下加强水泥行业环保工作的建议[J].环境工程,2015,33(9):118-120. [7] ZHANG C Y, YU B Y, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling, 2021, 166:105355. [8] 刘姚君,汪澜.水泥窑协同处置固体废物技术减排潜力与成本分析[J].水泥,2018(3):11-14. [9] 刘楠峰,范莉莉,陈肖琳.碳交易机制下以技术投入为导向的边际减排成本曲线研究:以水泥、火电、煤炭和钢铁行业为例[J].中国科技论坛,2017,5(7):57-63. [10] 顾阿伦,史宵鸣,汪澜,等.中国水泥行业节能减排的潜力与成本分析[J].中国人口·资源与环境,2012,22(8):16-21. [11] YUE X F, DEANE J P, O'GALLACHOIR B, et al. Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles[J]. Applied Energy, 2020, 276:115456. [12] 吴力波,钱浩祺,汤维祺.基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J].经济研究,2014,49(9):48-61. [13] Enkvist P, Dinkel J, Lin C. Pathways to a Low-Carbon Economy:Version 2 of the Global Greenhouse Gas Abatement Cost Curve[EB/OL]. Mckinsey Company, 2013[09-01], https://www.mckinsey.com/business-functions/sustainability/our-insights/pathways-to-a-low-carbon-economy. [14] JI D, ZHOU P. Marginal abatement cost, air pollution and economic growth:evidence from Chinese cities[J]. Energy Economics, 2020:86. [15] PARK H, LIM J. Valuation of marginal CO2 abatement options for electric power plants in Korea[J]. Energy Policy, 2009, 37(5):1834-1841. [16] LEE M, ZHANG N. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries[J]. Energy Economics, 2012, 34(5):1492-1497. [17] CHOI Y, NING Z, ZHOU P. Efficiency and abatement costs of energy-related CO2 emissions in China:a slacks-based efficiency measure[J]. Applied Energy, 2012, 98:198-208. [18] MATSUSHITA K, YAMANE F. Pollution from the electric power sector in Japan and efficient pollution reduction[J]. Energy Economics, 2012, 34(4):1124-1130. [19] ZENG S H, JIANG X, SU B, et al. China's SO2 shadow prices and environmental technical efficiency at the province level[J]. International Review of Economics and Finance, 2018, 57:86-102. [20] CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896. [21] 贾彦鹏,刘仁志.基于LEAP模型的城市能源规划与CO2减排研究:以景德镇为例[J].应用基础与工程科学学报,2010,18(7):75-83. [22] 汤铃,武佳倩,戴伟,等.碳交易机制对中国经济与环境的影响[J].系统工程学报,2014,29(5):701-712. [23] XIAO H, WEI Q, WANG H. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105. [24] KLEPPER G, PETERSON S. Marginal abatement cost curves in general equilibrium:The influence of world energy prices[J]. Resource and Energy Economics, 2006, 28(1):1-23. [25] FERNANDEZ P, LEUNG Y. Technology roadmap-low-carbon transition in the cement industry[J]. International Energy Agency, 2018 [26] 工业和信息化部,中华人民共和国工业和信息化部.国家工业节能技术装备推荐目录(2019-2020)[M].北京:中华人民共和国工业和信息化部,2019-2020. [27] 工业和信息化部,中华人民共和国工业和信息化部.国家工业节能技术应用指南与案例(2019-2020)[M].北京:中华人民共和国工业和信息化部,2019-2020. [28] 何峰,刘峥延,邢有凯,等.中国水泥行业节能减排措施的协同控制效应评估研究[J].气候变化研究进展,2021,17(4):400-409. [29] WANG Y, HÖLLER S, VIEBAHN P, et al. Integrated assessment of CO2 reduction technologies in China's cement industry[J]. International Journal of Greenhouse Gas Control, 2014, 20:27-36. [30] 蔡博峰,李琦,张贤,等.中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心.2021. [31] XU J, YI B, FAN Y. A bottom-up optimization model for long-term CO2 emissions reduction pathway in the cement industry:a case study of China[J]. International Journal of Greenhouse Gas Control, 2016, 44:199-216. [32] 蔡博峰,曹东,周颖,等.中国水泥企业能源消耗特征分析[J].环境工程,2011,29(2):123-126. [33] 魏军晓,耿元波,沈镭,等.基于国内水泥生产现状的碳排放因子测算[J].中国环境科学,2014,34(11):2970-2975. [34] 程婷.水泥行业温室气体减排潜力分析[D].合肥:合肥工业大学,2014:39. [35] ZUBERI M, PATEL M. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the swiss cement industry[J]. Journal of Cleaner Production, 2017, 142(4), 4294-4309. [36] NORDHAUS W. Special issue on global warming||the cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65. [37] 兰文献,王兆祥,潘民夫,等.节能型水泥生料降硫助剂辊压机终粉磨应用效果浅析[J].中国水泥,2021(6):102-104. [38] GHOULEH Z, SHAO Y. Turning municipal solid waste incineration into a cleaner cement production[J]. Journal of Cleaner Production, 2018, 195(10):268-279. [39] 张立,谢紫璇,曹丽斌,等.中国城市碳达峰评估方法初探[J].环境工程,2020,38(11):1-5,43. [40] BOSOAGA A, MASEK O, OAKEY J. CO2 Capture Technologies for Cement Industry[J]. Energy Procedia, 2009, 1(1):133-140. [41] 冯烨.中国工业重点行业技术进步的节能减排潜力研究[D].北京:北京理工大学,2015:46. [42] ZHOU W J, JIANG D, CHEN D J, et al. Capturing CO2 from cement plants:a priority for reducing CO2 emissions in China[J]. Energy, 2016, 106:464-474. [43] 李哲.中国企业掘金千亿碳交易市场[N].北京:中国经营报,2021-08-02(B19). [44] SLATER H, DE BOER D, 钱国强,等.2020年中国碳价调查[N].北京:中国碳论坛,2020. 欢迎订阅2022年《环境工程》 邮发代号:82-64
点击查看大图
计量
- 文章访问数: 562
- HTML全文浏览量: 79
- PDF下载量: 27
- 被引次数: 0