MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA
-
摘要: 钢铁行业是我国主要的能源消费及CO2排放行业,推动钢铁行业低碳绿色发展已成为实现我国碳达峰、碳中和的重要环节。为此,研究围绕能源结构调整、工艺结构优化、节能减排技术推广和CCUS技术应用4方面,通过设置基础情景、稳定发展情景和强化减排情景3类情景,利用边际减排成本曲线对我国钢铁行业34项减排技术的减排成本和减排潜力进行分析。结果表明:在稳定发展情景下,我国钢铁行业平均减排成本为433元/tCO2,所有技术的总减排成本为2100亿元,总减排潜力为4.9亿t。在各项减排技术中,废铁-电弧炉炼钢具有较高的减排经济效益,其以较低的单位减排成本贡献了钢铁行业近50%的碳减排量。未来,我国应加快推进长流程炼钢向短流程炼钢的发展,推动钢铁行业生产工艺的结构性调整。Abstract: Promoting the low-carbon development of the iron and steel industry has become an important part of achieving carbon peaking and carbon neutrality in China, as it's a major energy consumption and CO2 emitting industry. In this paper, we analyzed the key abatement technologies and the abatement costs for iron and steel industry under three types of scenarios and four decarbonization aspects:energy structure adjustment, process structure optimization, energy saving and emission reduction technology promotion, and CCUS technology application, to reveal the emission reduction priority of each technology. The results indicated that, under the steady development scenario, the average abatement cost for iron and steel industry was RMB 433/t CO2. The total abatement cost of all the technologies was RMB 210 billion, with a total carbon abatement volume of 490 million tons. Among the various abatement technologies, scrap-EAF had the best economic efficiency, contributing nearly half of the total abatement in the iron and steel industry, indicating that the scarp-EAF becomes an essential measure for China's iron and steel industry to achieve the target of carbon peak and carbon neutrality.
-
[1] WSA (World Steel Association). Steel Statistical Yearbook 2019[R/OL]. 2019.[https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html]. [2] 杨楠, 李艳霞, 吕晨, 等. 唐山市钢铁行业碳排放核算及达峰预测[J]. 环境工程, 2020, 38(11):44-52. [3] SHAN Y L, HUANG Q, GUAN D B, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7(1):54. [4] WU X C, ZHAO L, ZHANG Y X, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184:171-183. [5] LI Y, ZHU L. Cost of energy saving and CO2 emissions reduction in China's iron and steel sector[J]. Applied Energy, 2014, 130:603-616. [6] WSA (World Steel Association). Steel's Contribution to A Low Carbon Future and Climate Resilient Societies[R/OL]. 2017.[https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf]. [7] ZHANG S H, YI B W, WORRELL E, et al. Integrated assessment of resource-energy-environment nexus in China's iron and steel industry[J]. Journal of Cleaner Production, 2019, 232:235-249. [8] REN L, ZHOU S, PENG T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J]. Renewable and Sustainable Energy Reviews, 2021, 143:110846. [9] VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653. [10] DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229. [11] 魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141. [12] KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204. [13] WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362. [14] XIONG W M, YANG Y Z, WANG Y, et al. Marginal abatement cost curve for wind power in China:a provincial-level analysis[J]. Energy Science & Engineering, 2016, 4(4):245-255. [15] XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105. [16] YANG X, XI X, GUO S, et al. Carbon mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):3331-3345. [17] FAN Z Y, FRIEDMANN S J. Low-carbon production of iron and steel:technology options, economic assessment, and policy[J]. Joule, 2021, 5(4):829-862. [18] HE K, WANG L. A review of energy use and energy-efficient technologies for the iron and steel industry[J]. Renewable and Sustainable Energy Reviews, 2017, 70:1022-1039. [19] CHEN Q Q, GU Y, TANG Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies:a case study in China[J]. Applied Energy, 2018, 220:192-207. [20] 李新创, 李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8):224-231. [21] 李冰, 李新创, 李闯. 国内外钢铁工业能源高效利用新进展[J]. 工程研究-跨学科视野中的工程, 2017, 9(1):68-77. [22] 叶友斌, 邢芳芳, 刘锟, 等. 我国钢铁企业二氧化碳排放结构探讨[J]. 环境工程, 2012, 30(增刊2):224-227,245. [23] YILMAZ C, WENDELSTORF J, TUREK T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154:488-501. [24] ABDUL QUADER M, AHMED S, DAWAL S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55:537-549. [25] NISHIOKA K, UJISAWA Y, TONOMURA S, et al. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 Project), Part 1:hydrogen reduction in the blast furnace[J]. Journal of Sustainable Metallurgy, 2016, 2(3):200-208. [26] PEI M, PETÄJÄNIEMI M, REGNELL A, et al. Toward a fossil free future with HYBRIT:development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 2020, 10(7). [27] 王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义[J]. 中国冶金, 2019, 29(10):1-6. [28] AN R Y, YU B Y, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226:862-880. [29] IEA (International Energy Agency). Iron and Steel Technology Roadmap:Towards More Sustainable Steelmaking[R/OL]. 2020.[https://www.iea.org/reports/iron-and-steel-technology-roadmap]. [30] 蔡博峰,李琦,张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.2021. [31] CHEN W Y, YIN X, MA D. A bottom-up analysis of China's iron and steel industrial energy consumption and CO2 emissions[J]. Applied Energy, 2014, 136:1174-1183. [32] DING H, ZHENG H R, LIANG X, et al. Getting ready for carbon capture and storage in the iron and steel sector in China:assessing the value of capture readiness[J]. Journal of Cleaner Production, 2020, 244:118953. [33] LIANG X, GUO L Q, HASAN M, et al. Assessing the economics of CO2 capture in China's iron/steel sector:a case study[J]. Energy Procedia, 2019, 158:3715-3722. [34] MORRIS J, PALTSEV S, REILLY J. Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions:results from the EPPA model[J]. Environmental Modeling & Assessment, 2012, 17(4):325-336. [35] KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[C]//IAEE International Conference, 2011. [36] ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R]. MIT Joint Program on the Science and Policy of Global Change, 1998. [37] DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690. [38] CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896. [39] VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386. [40] NORDHAUS W D. Special Issue on Global Warming//The cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65. [41] 蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016-2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
点击查看大图
计量
- 文章访问数: 620
- HTML全文浏览量: 91
- PDF下载量: 34
- 被引次数: 0