MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA
-
摘要: 石化和化工行业是我国经济发展的支柱性产业,但同时也是高耗能、高排放行业。平衡石化和化工行业发展与碳达峰、碳中和之间的关系,制定科学、合理的减排措施,是实现石化和化工行业低碳绿色发展的重要措施。为此,研究围绕石化和化工重点行业,利用专家型和基于模型的边际成本曲线对我国石化和化工行业的关键减排技术及减排成本进行分析。研究结果显示,我国石化和化工行业平均减排成本为298元/tCO2,2035年累积碳减排量为4.4亿t,约占行业碳排放总量的30%。与节能减排措施相比,能源替代手段具有较高的减排成本,但也同时具有较高的减排潜力。2035年,能源替代的减排潜力占到总减排潜力的62%。未来,应着力推动传统煤化工行业能源利用向可再生、清洁能源的转变,助推石化和化工行业碳达峰、碳中和目标的实现。Abstract: Petrochemical and chemical industries are the pillar industries of China's national economy, as well as the industries with high energy consumption and emission. To achieve their low-carbon development, it's the key to balance the relationship between industry self-development and the goal of decarbonization. In this paper, we analyzed the key abatement technologies and the abatement costs for petrochemical and chemical industries through the expert-based and model-derived marginal abatement cost curve. The results indicated that the average abatement cost of petrochemical and chemical industries was RMB 298/t, with the potential of contributing the abatement of 0.44 billion tons CO2 in 2035 (account for 30% of total carbon emissions). Compared with energy conservation technologies, energy substitution have higher abatement cost, but also have higher abatement potential. In 2035, the application of energy substitution will account for 62% of the total carbon emission abatement. In this case, promoting the transformation of coal to renewable, clean energy will be the key to achieve carbon neutrality in the petrochemical and chemical industries.
-
[1] 牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3):163-167. [2] WANG H K, LU X, DENG Y, et al. China's CO2 peak before 2030 implied from characteristics and growth of cities[J]. Nature Sustainability, 2019, 2(8):748-754. [3] 何长全, 刘兰, 段宗志, 等. 生态文明环境下中国碳排放影响因素及减排措施分析[J]. 环境工程, 2015, 33(11):147-151. [4] WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362. [5] KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204. [6] PIZER W, ADLER M, ALDY J, et al. Using and improving the social cost of carbon[J]. Science, 2014, 346(6214):1189-1190. [7] PEARCE D. The social cost of carbon and its policy implications[J]. Oxford Review of Economic Policy, 2003, 19(3):362-384. [8] NORDHAUS W. Estimates of the social cost of carbon:concepts and results from the DICE-2013R model and alternative approaches[J]. Journal of the Association of Environmental and Resource Economists, 2014, 1(1/2):273-312. [9] PRICE R, HORNTON S, NELSON S. The Social Cost of Carbon and the Shadow Price of Carbon:What They Are, and How to Use Them in Economic Appraisal in the UK[R/OL]. Department for Environment, Food and Rural Affairs, 2007. https://www.gov.uk/government/publications/shadow-price-of-carbon-economic-appraisal-in-the-uk. [10] PINDYCK R S. Climate change policy:what do the models tell us?[J]. Journal of Economic Literature, 2013, 51(3):860-872. [11] STANTON F A A E A. Climate risks and carbon prices:revising the social cost of carbon[J]. Economics:The Open-Access, Open-Assessment E-Journal, 2012, 6:2012-10. [12] PINDYCK R S. The use and misuse of models for climate policy[J]. Review of Environmental Economics and Policy, 2017, 11(1):100-114. [13] PEZZEY J C V. Why the social cost of carbon will always be disputed[J]. WIREs Climate Change, 2019, 10(1):e558. [14] UK, Department of Energy and Climate Change. Carbon Valuation in UK policy Appraisal:a revised approach[R]. 2009.[https://www.gov.uk/government/publications/carbon-valuation-in-uk-policy-appraisal-a-revised-approach]. [15] XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105. [16] 毛显强, 邢有凯, 胡涛, 等. 中国电力行业硫、氮、碳协同减排的环境经济路径分析[J]. 中国环境科学, 2012, 32(4):748-756. [17] 刘胜强, 毛显强, 胡涛, 等. 中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术, 2012, 35(7):168-174. [18] DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229. [19] KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[J]. IAEE International Conference, 2011. [20] 魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141. [21] VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653. [22] DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690. [23] ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R/OL]. 1998. https://dspace.mit.edu/bitstream/handle/1721.1/3608/MITJPSPGC_Rpt40.pdf?sequence=1&origin=publication_detail. [24] CRIQUI P, MIMA S, VIGUIER L. Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings:an assessment using the POLES model[J]. Energy Policy, 1999, 27(10):585-601. [25] VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386. [26] NORDHAUS W D. The Cost of Slowing Climate Change:a Survey[J]. The Energy Journal, 1991, 12(1):37-65. [27] CHEN J M, YU B, WEI Y M. CO2 emissions accounting for the chemical industry:an empirical analysis for China[J]. Natural Hazards, 2019, 99(3):1327-1343. [28] YANEZ A E. Greenhouse gas mitigation strategies for the oil industry-bottom-up system analysis on the transition of the Colombian oil production and refining sector[R/OL]. University of Groningen, 2021.https://research.rug.nl/en/publications/greenhouse-gas-mitigation-strategies-for-the-oil-industry-bottom-. [29] UK, Department for Business, Energy and Industrial Strategy. Oil Refining Sector:Industrial Decarbonisation and Energy Efficiency Roadmap Action Plan[R/OL]. 2017. https://www.gov.uk/government/publications/industrial-decarbonisation-and-energy-efficiency-action-plans. [30] ACCENTURE. Decarbonizing Energy:From A to Zero[R/OL]. 2020. https://www.accenture.com/th-en/insights/energy/decarbonizing-energy-overview. [31] 汪芳, 秦积舜, 周体尧, 等. 基于油藏CO2驱油潜力的CCUS源汇匹配方法[J]. 环境工程, 2019, 37(2):51-56. [32] 王韶华, 于维洋, 张伟. 低碳经济的驱动因素及其驱动机理分析[J]. 环境工程, 2014, 32(12):143-147. [33] ZHOU W J, ZHU B, LI Q, et al. CO2 emissions and mitigation potential in China's ammonia industry[J]. Energy Policy, 2010, 38(7):3701-3709. [34] IEA. The Future of Hydrogen, IEA, Paris[R/OL]. 2019. https://www.iea.org/reports/the-future-of-hydrogen. [35] BP. Statistical Review of World Energy[R/OL]. 2020. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. [36] YANG X, XI X, GUO S, et al. Carbon Mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):331-3345. [37] TAKHT RAVANCHI M, SAHEBDELFAR S. Carbon dioxide capture and utilization in petrochemical industry:potentials and challenges[J]. Applied Petrochemical Research, 2014, 4(1):63-77. [38] IEA. Special Report on Carbon Capture Utilisation and Storage[R/OL]. 2020. https://www.iea.org/reports/ccus-in-clean-energy-transitions. [39] 蔡博峰, 李琦, 张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021. [40] 蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径[J]. 中国人口·资源与环境, 2021, 31(1):7-14. [41] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R/OL]. 2019. http://h2cn.org.cn/publicati/215.html. [42] BROWN T. Ammonia in China:change is coming[R]. 2019. https://www.ammoniaenergy.org/articles/ammonia-in-china-change-is-coming/. [43] FASIHI M, WEISS R, SAVOLAINEN J, et al. Global potential of green ammonia based on hybrid PV-wind power plants[J]. Applied Energy, 2021, 294:116170. [44] CHEN Q Q, GU Y, TANG Z Y, et al. Comparative environmental and economic performance of solar energy integrated methanol production systems in China[J]. Energy Conversion and Management, 2019, 187:63-75. [45] LI J Y, MA X X, LIU H, et al. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes[J]. Journal of Cleaner Production, 2018, 185:299-308. [46] YANG S, LIU Z Q, TANG Z Y, et al. Performance analysis of solar energy integrated with natural-gas-to-methanol process[J]. Energy Conversion and Management, 2017, 150:375-381. [47] 国家发展改革委. 国家重点节能低碳技术推广目录(2017年本,节能部分)[R]. 2018.
点击查看大图
计量
- 文章访问数: 593
- HTML全文浏览量: 145
- PDF下载量: 28
- 被引次数: 0