CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化氯对不同微生物的灭活特性及其对群落结构特征的影响

徐闯 巫寅虎 胡洪营 徐傲 倪欣业

徐闯, 巫寅虎, 胡洪营, 徐傲, 倪欣业. 二氧化氯对不同微生物的灭活特性及其对群落结构特征的影响[J]. 环境工程, 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
引用本文: 徐闯, 巫寅虎, 胡洪营, 徐傲, 倪欣业. 二氧化氯对不同微生物的灭活特性及其对群落结构特征的影响[J]. 环境工程, 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008
Citation: XU Chuang, WU Yin-hu, HU Hong-ying, XU Ao, NI Xin-ye. CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 57-63. doi: 10.13205/j.hjgc.202110008

二氧化氯对不同微生物的灭活特性及其对群落结构特征的影响

doi: 10.13205/j.hjgc.202110008
基金项目: 

国家自然科学基金(52000114);国家自然科学基金重点项目(51738005)。

详细信息
    作者简介:

    徐闯(1996-),男,硕士研究生。xchuang_21@163.com

    通讯作者:

    巫寅虎(1986-),男,博士,副研究员,主要从事再生水高标准处理与工业利用技术研究。wuyinhu@mail.tsinghua.edu.cn

    胡洪营(1963-),男,博士,教授,主要从事再生水安全高效利用理论与技术、水体修复与环境生物技术研究。hyhu@mail.tsinghua.edu.cn

CHLORINE DIOXIDE'S INACTIVATION ON DIFFERENT MICROORGANISMS AND ITS INFLUENCE ON THE CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE

  • 摘要: 二氧化氯是一种性能优良、应用广泛的消毒剂,可通过破坏细胞或病毒的组成结构、阻碍细胞代谢等方式实现微生物灭活。在自配水条件下,以二氧化氯投加量×消毒时间计算,二氧化氯剂量在15(mg·min)/L时,可实现对常见病毒(包括肠病毒71型、大肠杆菌噬菌体MS2等)3 log以上灭活率,在60(mg·min)/L时,可实现对常见细菌(包括大肠杆菌、金黄色葡萄球菌等)1.5 log以上灭活率,但灭活隐孢子虫卵则需要更高的剂量(如1.9 log灭活率可能需约600(mg·min)/L剂量);在实际污水厂进水中,30(mg·min)/L二氧化氯剂量只能分别实现0.8 log和0.5 log的大肠杆菌和总大肠菌群灭活率。二氧化氯消毒效果随温度升高显著提升,对于不同微生物,pH的变化对二氧化氯消毒效果的影响可能存在不同,而水中的有机物通常会因消耗二氧化氯而降低消毒效果,但在自然水体中也存在由于天然有机物可能的影响导致消毒效果优于自配水的情况。关于二氧化氯消毒后细菌群落结构的变化研究不多,仅有少量研究涉及市政污水、再生水、饮用水等。二氧化氯消毒一定时间后,悬浮态和生物膜上的微生物均可能出现再生长现象,但再生长过程中这些残生细菌的群落结构变化及其生长分泌特性仍有待研究。
  • [1] 张金松. 饮用水二氧化氯净化技术[M]. 北京:化学工业出版社, 2003.
    [2] 黄君礼. 水消毒剂和处理剂:二氧化氯[M]. 北京:化学工业出版社, 2010.
    [3] OGATA N. Denaturation of protein by chlorine dioxide:oxidative modification of tryptophan and tyrosine residues[J]. Biochemistry, 2007, 46(16):4898-4911.
    [4] OFORI I, MADDILA S, LIN J, et al. Chlorine dioxide oxidation of Escherichia coli in water:a study of the disinfection kinetics and mechanism[J]. Journal of Environmental Science and Health, Part A, 2017, 52(7):598-606.
    [5] ALVAREZ M E, OBRIEN R T. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine[J]. Applied and Environmental Microbiology, 1982, 44(5):1064-1071.
    [6] WIGGINTON K R, PECSON B M, SIGSTAM T, et al. Virus inactivation mechanisms:impact of disinfectants on virus function and structural integrity[J]. Environmental Science & Technology, 2012, 46(21):12069-12078.
    [7] YE Y, CHANG P H, HARTERT J, et al. Reactivity of Enveloped Virus Genome, Proteins, and Lipids with Free Chlorine and UV254[J]. Environmental Science & Technology, 2018, 52(14):7698-7708.
    [8] 陈为民. 图说病毒[M]. 湖北:湖北科学技术出版社, 2017.
    [9] HUANG J L, WANG L, REN N Q, et al. Disinfection effect of chlorine dioxide on bacteria in water[J]. Water Research, 1997, 31(3):607-613.
    [10] 李毅. 金黄色葡萄球菌及其肠毒素研究进展[J]. 中国卫生检验杂志, 2004,14(4):392-395.
    [11] 王晓阁. 枯草芽孢杆菌研究进展与展望[J]. 中山大学研究生学刊(自然科学医学版), 2012, 33(3):14-23.
    [12] 张永吉, 刘文君, 张琳. 氯对紫外线灭活枯草芽孢杆菌的协同作用[J]. 环境科学, 2006,27(2):329-332.
    [13] OFORI I, MADDILA S, LIN J, et al. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water:the kinetics and mechanism[J]. Journal of Water Process Engineering, 2018, 26:46-54.
    [14] 吴明权, 魏士长, 黄银秋, 等. 绿脓杆菌耐药机制及其治疗对策研究[J]. 中国医院用药评价与分析, 2016, 16(11):1460-1461.
    [15] 李光军. 肺部鸟型分支杆菌感染的放射学表现[J]. 国外医学(临床放射学分册), 2004,27(3):159-160.
    [16] VICUNA-REYES J P, LUH J, MARINAS B J. Inactivation of Mycobacterium avium with chlorine dioxide[J]. Water Research, 2008, 42(6/7):1531-1538.
    [17] 崔福义, 左金龙, 赵志伟, 等. 饮用水中贾第鞭毛虫和隐孢子虫研究进展[J]. 哈尔滨工业大学学报, 2006,38(9):1487-1491.
    [18] JIN M, SHAN J Y, CHEN Z L, et al. Chlorine dioxide inactivation of enterovirus 71 in water and its impact on genomic targets[J]. Environmental Science & Technology, 2013, 47(9):4590-4597.
    [19] LIM M Y, KIM J M, KO G. Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide[J]. Water Research, 2010, 44(10):3243-3251.
    [20] THURSTON-ENRIQUEZ J A, HAAS C N, JACANGELO J, et al. Inactivation of enteric adenovirus and feline calicivirus by chlorine dioxide[J]. Applied and Environmental Microbiology, 2005, 71(6):3100-3105.
    [21] MURPHY J L, HAAS C N, ARROWOOD M J, et al. Efficacy of chlorine dioxide tablets on inactivation of cryptosporidium oocysts[J]. Environmental Science & Technology, 2014, 48(10):5849-5856.
    [22] SUN X B, CUI F Y, ZHANG J S, et al. Inactivation of Chironomid larvae with chlorine dioxide[J]. Journal of Hazardous Material, 2007, 142(1/2):348-353.
    [23] LI J W, XIN Z T, WANG X W, et al. Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide[J]. Water Research, 2004, 38(6):1514-1519.
    [24] AYYILDIZ O, ILERI B, SANIK S. Impacts of water organic load on chlorine dioxide disinfection efficacy[J]. Journal of Hazardous Material, 2009, 168(2/3):1092-1097.
    [25] BARBEAU B, DESJARDINS R, MYSORE C, et al. Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters[J]. Water Research, 2005, 39(10):2024-2033.
    [26] RUFFELL K M, RENNECKER J L, MARINAS B J. Inactivation of Cryptosporidium parvum oocysts with chlorine dioxide[J]. Water Research, 2000, 34(3):868-876.
    [27] TRUCHADO P, GIL M I, SUSLOW T, et al. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil[J]. Plos One, 2018, 13(7):e0199291.
    [28] BANACH J L, VAN Overbeek L S, GROOT M N N, et al. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing[J]. International Journal of Food Microbiology, 2018, 269:128-136.
    [29] JIANG L, CHEN Z Y, LIU L, et al. Effect of chlorine dioxide on decontamination of fresh-cut coriander and identification of bacterial species in fresh-cutting process[J]. Journal of Food Processing and Preservation, 2018, 42(2):e13465.
    [30] HE G L, ZHANG T Q, ZHENG F F, et al. Reaction of fleroxacin with chlorine and chlorine dioxide in drinking water distribution systems:kinetics, transformation mechanisms and toxicity evaluations[J]. Chemical Engineering Journal, 2019, 374:1191-1203.
    [31] ZHANG H Y, TIAN Y M, KANG M X, et al. Effects of chlorination/chlorine dioxide disinfection on biofilm bacterial community and corrosion process in a reclaimed water distribution system[J]. Chemosphere, 2019, 215:62-73.
    [32] WALDEN C, CARBONERO F, ZHANG W. Preliminary assessment of bacterial community change impacted by chlorine dioxide in a water treatment plant[J]. Journal of Environmental Engineering, 2016, 142(2):04015077.
    [33] MARANDA L, COX A M, CAMPBELL R G, et al. Chlorine dioxide as a treatment for ballast water to control invasive species:shipboard testing[J]. Marine Pollution Bulletin, 2013, 75(1/2):76-89.
    [34] OFORI I, MADDILA S, LIN J, et al. Profiling the susceptibility of the autochthonous bacterial community in raw wastewater to chlorine dioxide with denaturing gradient gel electrophoresis[J]. Desalination and Water Treatment, 2020, 203:104-111.
    [35] PANG Y C, XI J Y, XU Y, et al. Shifts of live bacterial community in secondary effluent by chlorine disinfection revealed by Miseq high-throughput sequencing combined with propidium monoazide treatment[J]. Applied Microbiology and Biotechnology, 2016, 100(14):6435-6446.
    [36] TRUCHADO P, GIL M I, SUSLOW T, et al. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil[J]. Plos One, 2018, 13(7):e0199291.
    [37] WU M S, XU X. Inactivation of antibiotic-resistant bacteria by chlorine dioxide in soil and shifts in community composition[J]. RSC Advances, 2019, 9(12):6526-6532.
    [38] ZHANG H, TIAN Y, KANG M, et al. Effects of chlorination/chlorine dioxide disinfection on biofilm bacterial community and corrosion process in a reclaimed water distribution system[J]. Chemosphere, 2019, 215:62-73.
    [39] SUN W, LIU W, CUI L, et al. Characterization and identification of a chlorine-resistant bacterium, Sphingomonas TS001, from a model drinking water distribution system[J]. Science of the Total Environment, 2013, 458/460:169-175.
    [40] ROEDER R S, LENZ J, TARNE P, et al. Long-term effects of disinfectants on the community composition of drinking water biofilms[J]. International Journal of Hygiene and Environmental Health, 2010, 213(3):183-189.
    [41] US Environmental Protection Agency (EPA). Guidelines for Water Reuse:EPA/600/R-12/618[R]. Washington, D.C.:Environmental Protection Agency., 2012.
    [42] 汤芳. 污水再生处理反渗透工艺膜污染组分识别与控制[D]. 北京:清华大学, 2016.
    [43] GAGNON G, VOLK C J, CHAURET C, et al. Changes in microbiological quality in model distribution systems after switching from chlorine or chloramines to chlorine dioxide[J]. Journal of Water Supply:Research and Technology-Aqua, 2006, 55(5):301-311.
    [44] STEHOUWER P P, BUMA A, PEPERZAK L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide[J]. Environmental Technology, 2015, 36(13/16):2094-2104.
    [45] LEE Y. Efficiency comparison between chlorine and chlorine dioxide to control bacterial regrowth in water distribution system[J]. Journal of Environmental Health Sciences, 2006, 32(4):282-291.
  • 加载中
计量
  • 文章访问数:  249
  • HTML全文浏览量:  32
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回