SPATIOTEMPORAL VARIATION OF DRIVING FACTORS OF ALGAL PROLIFERATION IN A LARGE RIVER-CONNECTED LAKE
-
摘要: 以我国大型通江湖泊鄱阳湖为例,对2016-2018年鄱阳湖6个典型点位的叶绿素a、TN等10个指标进行测定。分析了鄱阳湖不同因子的时空分异特征,并运用综合营养状态指数法及主成分分析方法,结合水文水动力、泥沙和人为影响等因素,判断藻类增殖的驱动要素。结果显示:COD浓度南高北低,由西向东表现为高-低-高;TN变化趋势与NH3-N相近,夏季呈现东部南部高、北部低的特点,而西部蚌湖至都昌处分布扩散;TP南高北低、东西部均较高;直链藻和微囊藻出现频次分别占51.11%和16.44%;蚌湖点位藻细胞密度与叶绿素a浓度均最高,分别为最小点位的7.8,5.3倍。研究期间鄱阳湖以轻度富营养为主;TP为6个点位藻类增殖的主要限制性因子,藻类增殖与TN关系较小;水温、溶解氧等也可能成为藻类增殖的要素。后期鄱阳湖藻类综合治理需从加强季节性监测与预警、重点识别和调控测点关键性因子和强化藻种监控等方面展开。Abstract: Taking Poyang Lake, a large river-connected lake in China as an example, 10 indicators, including Chl-a and TN, were measured at six typical points in Poyang Lake from 2016 to 2018. The spatio-temporal variation characteristics of different factors in Poyang Lake were analyzed, and the driving factors of algal proliferation were determined by integrated trophic state index method and principal component analysis, combined with the hydrology and hydrodynamics, sediment and anthropogenic influence of Poyang Lake. The results showed that:COD concentration was higher in the south and lower in the north, showed a high-low-high trend from the west to the east. The trend of TN concentration was similar to that of NH3-N, showing higher in the south and the east, and lower in the north in summer, while the distribution spread from Banghu to Duchang in the west. TP concentration was higher in the south and lower in the north, and high in both the east and west. The occurrence frequency of Melosira and Microcystis was 51.11% and 16.44%, respectively. The density of algal cells and chl-a were the highest in Banghu, which were 7.8 and 5.3 times higher than those in Hukou, respectively. Poyang Lake was mainly at a light eutrophication level during the study period. TP was the main limiting factor for algal proliferation at six sites, which had little relationship with TN. Also, water temperature and dissolved oxygen may be factors for algal proliferation in Poyang Lake. In the future, the comprehensive management of algae in Poyang Lake should be carried out by strengthening seasonal monitoring and early warning, focusing on identifying and regulating key factors at measurement points, and strengthening algal species monitoring.
-
[1] 谢启姣,刘进华.1987-2016年武汉城市湖泊时空演变及其生态服务价值响应[J].生态学报,2020,40(21):7840-7850. [2] 宋晓薇,赵侣璇,谢祎敏,等.湖泊生态系统服务功能价值估算及保护对策研究[J].环境科学与管理,2019,44(1):162-166. [3] SONG W W, XU Q, FU X Q, et al. Research on the relationship between water diversion and water quality of Xuanwu Lake, China[J]. International Journal of Environmental Research and Public Health,2018,15(6):1262-1288. [4] ZHOU J, HAN X X, QIN B Q, et al. Responses of alkaline phosphatase activity to wind-driven waves in a large, shallow lake:Implications for phosphorus availability and algal blooms[J].Journal of Environmental Sciences,2021,99(1):143-150. [5] 杨子毅,陈玉柱.洪泽湖枯水期富营养化现状及对策分析[J].仪器仪表与分析监测,2020(2):38-40. [6] 张含笑,霍守亮,Kevin M Y,等.浅水富营养化湖泊巢湖汞的历史沉积记录:人类活动和气候变化的影响[J].Engineering,2019,5(2):296-304,333-341. [7] 凌祯,史正涛,徐杉,等.滇池湖滨带叶绿素a与营养盐空间分布特征[J].水文,2020,40(1):76-80. [8] 温春云,刘聚涛,胡芳,等.鄱阳湖水质变化特征及水体富营养化评价[J].中国农村水利水电,2020(11):83-88. [9] 方娜. 鄱阳湖典型湿地水质富营养化评价及其与土地利用格局之间的关系[D].南昌:江西师范大学,2020. [10] 杜冰雪,徐力刚,张杰,等.鄱阳湖富营养化时空变化特征及其与水位的关系[J].环境科学研究,2019,32(5):795-801. [11] ZHANG D W, LIAO Q G, ZHANG L, et al. Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China[J]. Ecotoxicology,2015,24(1):19-28. [12] LIU X, LI Y L, LIU B G, et al. Cyanobacteria in the complex river-connected Poyang Lake:horizontal distribution and transport[J]. Hydrobiologia,2016,768(1):95-110. [13] WU Z S, HE H, CAI Y J, et al. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang:a Yangtze-connected lake[J]. Hydrobiologia,2014,732(1):61-70. [14] 靳晓存.富营养化水体藻类危害及其生物学特性[J].科技资讯,2010(26):146. [15] 熊彩蕾,罗亚田,王丽.藻类对水体的危害及灭藻技术的现状分析[J].辽宁化工,2009,38(3):173-175. [16] 潘双叶.水体中藻类的危害及控制方法[J].黑龙江环境通报,2006(1):43-45. [17] 陈金红,戴逸晨,刘宾,等.基于多要素评价指标的鄱阳湖水体富营养化研究[J].地理信息世界,2020,27(5):78-82. [18] 刘恋,王国英.鄱阳湖水环境质量及主要污染物变化趋势分析[J].水文,2016,36(3):61-64,96. [19] 黄学辉,陈传红,袁轶君,等.鄱阳湖季节性水体水质特征分析[J].东华理工大学学报(自然科学版),2018,41(2):175-180. [20] 余定坤,徐志文,刘威,等.江西鄱阳湖国家级自然保护区子湖泊越冬水鸟多样性及变化趋势[J].生态与农村环境学报,2020,36(11):1403-1409. [21] 陈旻坤,徐昔保.近30年来鄱阳湖生态系统服务变化[J].湖泊科学,2021,33(1):309-318. [22] 中国环境监测总站. 湖泊(水库)富营养化评价方法及分级技术规定:总站生字[2001] 090号[S]. 北京:中国环境监测总站,2001. [23] 全栋,张生,史小红,等.环境因子对乌梁素海水体营养状态的影响:基于2013-2018年监测数据的分析[J].湖泊科学,2020,32(6):1610-1619. [24] 曾一川,王华,渠昊,等.滨湖河网叶绿素a时空分布特征及相关性分析[J].环境工程,2020,38(9):23-30,153. [25] 刘静. 鄱阳湖水质参数遥感反演及富营养化评价[D].赣州:江西理工大学,2020. [26] 陈晓玲,张媛,张琍,等.丰水期鄱阳湖水体中氮、磷含量分布特征[J].湖泊科学,2013,25(5):643-648. [27] 贾娟娟,王安琪.鄱阳湖湖区总磷总氮污染变化趋势分析[J].江西科学,2017,35(6):875-877,891. [28] 唐国华,林玉茹,胡振鹏,等.鄱阳湖区氮磷污染物分布、转移和削减特征[J].长江流域资源与环境,2017,26(9):1436-1445. [29] 彭宁彦,戴国飞,张伟,等.鄱阳湖不同湖区营养盐状态及藻类种群对比[J].湖泊科学,2018,30(5):1295-1308. [30] 严文逸,王绍祥,陈立婧.青草沙水库直链藻种群特征及其对环境因子的响应[J].基因组学与应用生物学,2017,36(5):2119-2127. [31] 水利部水文局. 中国内陆水域常见藻类图谱[M]. 武汉:长江出版社,2012. [32] 朱伟,陈怀民,肖曼,等.风生紊流导致微囊藻群体破碎和形态变化(英文)[J].湖泊科学,2021,33(2):349-365,647. [33] 赖普文,程健.基于SPSS的船舶运输对鄱阳湖水质影响探寻[J].中国水运,2015(9):40-41. [34] 王毛兰. 鄱阳湖流域氮磷时空分布及其地球化学模拟[D].南昌:南昌大学,2007. [35] 李海军,陈晓玲,陆建忠,等.考虑采砂影响的鄱阳湖丰水期悬浮泥沙浓度模拟[J].湖泊科学,2016,28(2):421-431. [36] 陈莉琼. 基于辐射传输机理的鄱阳湖悬浮颗粒物浓度遥感反演研究[D].武汉:武汉大学,2011. [37] 黄敏. 泥沙对总磷的吸附与释放研究及总磷含量预测[D].重庆:重庆交通大学,2009.
点击查看大图
计量
- 文章访问数: 197
- HTML全文浏览量: 14
- PDF下载量: 10
- 被引次数: 0