APPLICATIONS AND DIFFERENCES ANALYSIS OF SEVERAL TYPICAL MODELS IN SPECIES SENSITIVITY DISTRIBUTION
-
摘要: 模型的选择是物种敏感度分布拟合的关键。研究系统地介绍了物种敏感度分布法中常用的5种分布模型,即正态分布、对数正态分布、逻辑斯谛分布、对数逻辑斯谛分布和伯尔三参数分布的内涵、特点与适用性。分析了模型之间的差异性。研究不仅提出了物种敏感度分布拟合中模型筛选与拟合优度检验的方法,并且使用5种模型分别拟合出镉的物种敏感分布曲线,进一步讨论了模型之间的差异与选择依据。最后,提出了物种敏感度分布拟合中模型选择的一些建议。研究结果可为物种敏感度分布法的应用与水质基准的推导提供理论参考。Abstract: The selection of models is the key to the species-sensitive distribution method. In this study, characteristics and applicability of five distribution models commonly used in the species-sensitive distribution methods were systematically introduced, which were normal distribution, log-normal distribution, logistic distribution, log-logistic distribution and Burr-Ⅲ distribution. The variability among the models was analyzed. This study not only proposed the methods of model screening and goodness-of-fit test in species sensitivity distribution fitting, but also fitted the species sensitivity distribution curves of cadmium using each one of the five models, and further discussed the differences between the models and the basis of selection. Finally, some suggestions for model selection in the fitting of species-sensitivity distribution were presented. This result could provide theoretical references for the application of the species-sensitivity distribution method and the derivation of water quality benchmarks.
-
[1] 吴丰昌,冯承莲,张瑞卿,等. 我国典型污染物水质基准研究[J]. 中国科学:地球科学, 2012, 42(5):665-672. [2] 周启星. 环境基准研究与环境标准制定进展及展望[J]. 生态与农村环境学报, 2010, 26(1):1-8. [3] SOLOMON K R, BAKER D B, RICHARDS R P, et al. Ecological risk assessment of atrazine in north american surface waters[J]. Environmental Toxicology and Chemistry, 1996, 15(1):31-76. [4] 陈丽红,张瑜,丁婷婷,等. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 2020, 29(8):1610-1616. [5] ANZECC A. Australian and New Zealand Guidelines for Fresh and Marine Water Quality[R]. Australian and New Zealand environment and conservation council and agriculture and resource management council of Australia and New Zealand, Canberra, 2000:1-103. [6] 环境保护部. 淡水水生生物水质基准制定技术指南:HJ 831-2017[S].北京:环境保护部,2017:178. [7] CANADIAN COUNCIL of RESOURCE and ENVIRONMENT MINISTERS (CCME). A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic life[R]. Ottawa:CCME, 2007. [8] 吴丰昌,冯承莲,曹宇静,等. 锌对淡水生物的毒性特征与水质基准的研究[J]. 生态毒理学报, 2011, 6(4):367-382. [9] 吴丰昌,冯承莲,曹宇静,等. 我国铜的淡水生物水质基准研究[J]. 生态毒理学报, 2011, 6(6):617-628. [10] FENG C L, WU F C, ZHAO X L, et al. Water quality criteria research and progress[J]. Science China Earth Sciences, 2012, 55(6):882-891. [11] STEPHAN C E, MOUNT D I, HANSEN D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[M]. Washington:US Environmental Protection Agency, 1985. [12] TRAAS T P. Guidance Document on Deriving Environmental Risk Limits[R]. Bilthoven, the Netherlands:National institute for public health and the environment (RIVM), 2001. [13] ECB. Technical Guidance Document on Risk Assessment-Part Ⅱ[R]. Italy, Ispra:Institute for Health and C onsumer Protection, 2003. [14] Van V P, TRAAS T P, WINTERSEN A M, et al. ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data[J]. RIVM Rapport 601501028, 2005. [15] NEWMAN M C, OWNBY D R, MEZIN L C A, et al. Applying species-sensitivity distributions in ecological risk assessment:Assumptions of distribution type and sufficient numbers of species[J]. Environmental Toxicology and Chemistry, 2000, 19(2):508-515. [16] WAGNER C, LOKKE H. Estimation of ecotoxicological protection levels from NOEC toxicity data[J]. Water Research, 1991, 25(10):1237-1242. [17] ALDENBERG T, SLOB W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data[J]. Ecotoxicology and environmental safety, 1993, 25(1):48-63. [18] SHAO Q X. Estimation for hazardous concentrations based on NOEC toxicity data:an alternative approach[J]. Environmetrics, 2000, 11(5):583-595. [19] MOREIRA R A, MANSANO A D S, ROCHA O. The toxicity of carbofuran to the freshwater rotifer, Philodina roseola[J]. Ecotoxicology, 2015, 24(3):604-615. [20] VAN STRAALEN N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc[J]. Environmental Toxicology and Pharmacology, 2002, 11(3/4):167-172. [21] BRATTIN W J, BARRY T M, CHIU N, et al. Monte carlo modeling with uncertain probability density functions[J]. Human and Ecological Risk Assessment:An International Journal, 1996, 2(4):820-840. [22] BATLEY G E, VAN D R A, WAME M S J, et al. Technical Rationale for Changes to the Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants[R]. Australian Government Standing Council on Environment and Water, Canberra, 2014. [23] FISHER R, VAN D R, BATLEY G, et al. Key Issues in the Derivation of Water Quality Guideline Values[R]. Australian Institute of Marine Science, 2019. [24] MICHAEL W, BATLEY G E, VAN D R A, et al. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants:Prepared for the Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality[R]. Australian Government Department of Agriculture and Water Resources, 2018. [25] FENG C L, LI H, YAN Z F, et al. Technical study on national mandatory guideline for deriving water quality criteria for the protection of freshwater aquatic organisms in China[J]. Journal of Environmental Management, 2019, 250:109539. [26] LIU Q, XU X Q, ZENG J N, et al. Development of marine water quality criteria for inorganic mercury in china based on the retrievable toxicity data and a comparison with relevant criteria or guidelines[J]. Ecotoxicology, 2019, 28(4):412-421. [27] DING T T, DU S L, ZHANG Y H, et al. Hardness-dependent water quality criteria for cadmium and an ecological risk assessment of the Shaying River Basin, China[J]. Ecotoxicology and environmental safety, 2020, 198:110666. [28] 张志霞,王斌,袁宏林,等. 运用物种敏感度分布法推导磺胺类药物的水质基准[J]. 环境科学与技术, 2016, 39(12):184-188. [29] KOOIJMAN S. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987, 21(3):269-276. [30] POSTHUMA L, SUTER II G W, TRAAS T P. Species Sensitivity Distributions in Ecotoxicology[M]. Los Angeles:CRC Press, 2001:37-52. [31] VAN STRAALEN N M, VAN RIJN J P. Ecotoxicological Risk Assessment of Soil Fauna Recovery from Pesticide Application[M]. New York:Reviews of Environmental Contamination and Toxicology, 1998:83-141. [32] HALL JR L W, SCOTT M C, KILLEN W D J E T, et al. Ecological risk assessment of copper and cadmium in surface waters of chesapeake bay watershed[J]. Environmental Toxicology and Chemtry:An Internation Journal,1998, 17(6):1172-1189. [33] BELANGER S, BARRON M, CRAIGC P, et al. Future needs and recommendations in the development of species sensitivity distributions:estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures[J]. Integrated Environmental Assessment and Management, 2017, 13(4):664-674. [34] BELANGER S, CARR G J. SSDs revisited:Part ii-practical considerations in the development and use of application factors applied to species sensitivity distributions[J]. Environmental Toxicology and Chemistry, 2019, 38(7):1526-1541. [35] WHEELER J R, GRIST E P M, LEUNG K M Y, et al. Species sensitivity distributions:data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1/12):192-202. [36] DUBOUDIN C, CIFFROY P, MAGAUD H. Effects of data manipulation and statistical methods on species sensitivity distributions[J]. Environmental Toxicology and Chemistry, 2004, 23(2):489-499. [37] XU F L, LI Y L, WANG Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015,54:227-237. [38] GERARD G, JRJ A, LUCA M, et al. Pan-European soil erosion risk assessment:The PESEA Map verson 1, October 2003[J]. Analytica Chimica Acta, 2004, 1(0):233-249. [39] FENG C L, WU F C, MU Y S, et al. Interspecies correlation estimation-applications in water quality criteria and ecological risk assessment[J]. Environmental Science & Technology, 2013, 47(20):11382-11383. [40] FENG C L, WU F C, Dyer S D, et al. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China[J]. Chemosphere, 2013, 90(3):1177-1183. [41] 冯永亮. 物种敏感度分布的模型选择和最小样本量研究[J]. 安全与环境学报, 2020, 20(5):1990-2000. [42] WANG Y, WU F C, GIESY J P, et al. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals[J]. Environmental Science and Pollution Research, 2015, 22(18):13980-13989. [43] 刘克. 我国主要小麦产地土壤镉和铅的安全阈值研究[D]. 西安:西北农林科技大学, 2016. [44] 蒋丹烈,胡霞林,尹大强. 应用物种敏感性分布法对太湖沉积物中多环芳烃的生态风险分析[J]. 生态毒理学报, 2011, 6(1):60-66. [45] 董明明,牟力言,秦莉,等. 物种敏感性分布法拟合函数的拟合优度评价[J]. 农业环境科学学报, 2021, 40(3):544-551. [46] 王颖,冯承莲,穆云松,等. 非参数核密度估计在铜、银物种敏感度分布中的应用[J]. 中国环境科学, 2017, 37(4):1548-1555. [47] SHAPIRO S S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52(3/4):591-611. [48] AHSANULLAHA M, KIBRIA B M G, SHAKIL M. Normal Distribution[M]. Normal and Student'st Distributions and Their Applications. Atlantis Press, Paris, 2014:7-50. [49] BOX J F. Guinness, Gosset, Fisher, and small samples[J]. Statistical science, 1987,2(1):45-52. [50] MALTBY L, BLAKE N, BROCKB T C M, et al. Insecticide species sensitivity distributions:importance of test species selection and relevance to aquatic ecosystems[J]. Environmental Toxicology and Chemistry:An International Journal, 2005,24(2):379-388. [51] 于洋,孙月静. 对数正态分布参数的最大似然估计[J]. 九江学院学报, 2007(6):55-57. [52] ALDENBERG T, JAWORSKA J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[J]. Ecotoxicology and Environmental Safety, 2000, 46(1):1-18. [53] CROW E L, SHIMIZU K. Lognormal Distributions[M]. New York:Marcel Dekker, 1987. [54] SOLOMON K R, GIDDINGS J M, MAUND S J. Probabilistic risk assessment of cotton pyrethroids:Ⅰ. Distributional analyses of laboratory aquatic toxicity data[J]. Environmental Toxicology and Chemistry:An International Journal, 2001, 20(3):652-659. [55] 艾舜豪,李霁,王晓南,等. 太湖双酚A的水质基准研究及风险评价[J]. 环境科学研究, 2020, 33(3):581-588. [56] VERHULST P F. Notice sur la loi que la population suit dans son accroissement[J]. Corresp. Math. Phys, 1838, 10:113-126. [57] VERHULST P F. Recherches mathématiques sur la loi d'accroissement de la population[J]. Journal Des Économistes, 1845,12:276. [58] LIN G D, HU C Y. On characterizations of the logistic distribution[J]. Journal of Statistical Planning and Inference, 2008, 138(4):1147-1156. [59] BALAKRISHNAN N. Handbook of the Logistic Distribution[M]. Los Angeles:CRC Press, 1991:237-263. [60] 张烨. Ⅳ型广义Logistic分布的统计推断理论方法及应用[D]. 北京:北京工业大学, 2019. [61] BENNETT S. Log-logistic regression models for survival data[J]. Journal of the Royal Statistical Society:Series C (Applied Statistics), 1983, 32(2):165-171. [62] O'QUIGLEY J, STRUTHERS L. Survival models based upon the logistic and log-logistic distributions[J]. Computer Programs in Biomedicine, 1982, 15(1):3-11. [63] KANTAM R R L, SRINIVASA RAO G, SRIRAM B. An economic reliability test plan:log-logistic distribution[J]. Journal of Applied Statistics, 2006, 33(3):291-296. [64] 雷炳莉,黄圣彪,王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(增刊1):350-358. [65] FORBES V E, CALOW P. Species sensitivity distributions revisited:a critical appraisal[J]. Human and Ecological Risk Assessment:An International Journal, 2002, 8(3):473-492. [66] ZHENG X, ZANG W C, YANG Z G, et al. Species sensitivity analysis of heavy metals to freshwater organisms[J]. Ecotoxicology, 2015,24(7):1621-1631. [67] TADIKAMALLA P R. A look at the Burr and related distributions[J]. International Statistical Review/Revue Internationale de Statistique, 1980:337-344. [68] 陈瑾,刘奕梅,张建英. 基于物种敏感性分布的微囊藻毒素与氮污染水体生态风险评估[J]. 应用生态学报, 2014, 25(4):1171-1180. [69] HOSE G C, VAN DEN BRINK P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data[J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4):511-520. [70] 王印,王军军,秦宁,等. 应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险[J]. 环境科学学报, 2009, 29(11):2407-2414. [71] 曾勇,孙霄,赖雨薇,等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用[J]. 生态毒理学报, 2020, 15(5):235-243. [72] VERSTEEG D J, BELANGER S E, CARR G J. Understanding single-species and model ecosystem sensitivity:data-based comparison[J]. Environmental Toxicology and Chemistry:An International Journal, 1999, 18(6):1329-1346. [73] CALDWELL D J, MASTROCCO F, HUTCHINSON T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol[J]. Environmental Science & Technology, 2008, 42(19):7046-7054. [74] 金小伟,王业耀,王子健. 淡水水生态基准方法学研究:数据筛选与模型计算[J]. 生态毒理学报, 2014, 9(1):1-13. [75] 关于发布国家生态环境基准《淡水水生生物水质基准-镉》(2020年版)及其技术报告的公告[R]. 生态环境部, 2020. [76] SCHWARZ C J, TILLMANNS A R. Improving statistical methods to derive species sensitivity distributions[J]. Province of British Columbia:Victoria, BC, Canada, 2019. [77] DUBOUDIN C, CIFFROY P, MANGAUD H. Acute-to-chronic species sensitivity distribution extrapolation[J]. Environmental Toxicology and Chemistry:An International Journal, 2004, 23(7):1774-1785.
点击查看大图
计量
- 文章访问数: 409
- HTML全文浏览量: 26
- PDF下载量: 16
- 被引次数: 0