PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK
-
摘要: PM2.5浓度的预测对于大气污染治理、改善环境质量等起到重要作用。受气象条件变化与大气污染物排放等多种因素的交叉影响,PM2.5预测通常易受突变事件及噪声数据干扰。因此,基于对气象条件以及大气污染物与PM2.5的相关性分析,提出阶段式时序注意力网络模型(staged temporal-attention network,STAN),该方法融合多段注意力学习模块与循环神经网络,建模气象因素与大气污染物对PM2.5浓度的交叉影响。统计分析北京市、上海市、广州市预测结果的绝对误差值,可知:1)对比广泛使用的单一类模型支持向量机(support vector machine,SVM)、长短期时序记忆方法(long short-term memory,LSTM)和多层感知机(multilayer perceptron,MLP),STAN可达到10%以上的性能领先;对比最新的融合类模型U型网络(U-net),STAN领先了7%的优势。2)以北京市冬季预测结果为例进行统计分析,STAN的预测值与实测值之间的拟合系数可有95.2%的性能领先。此外,在鲁棒性分析中发现,STAN在含有10%噪声的数据上进行预测,误差上升幅度仅为9.3%。结果表明:注意力机制与时序学习模块相结合能够深度挖掘PM2.5变化规律并抑制噪声数据,且STAN模型可以进行PM2.5浓度的鲁棒预测。Abstract: The forecast of PM2.5 concentration plays an important role in air pollution control and improvement of environmental quality. Affected by multiple factors such as changes in meteorological conditions and air pollutants emissions, the PM2.5 forecast was usually susceptible to sudden changes and noise data. Therefore, in-depth exploration of the PM2.5 concentration change law and modeling robust prediction models have become key steps in this task. Based on the analysis of the correlation between meteorological conditions and atmospheric pollutants on PM2.5, a staged temporal-attention network (STAN) was proposed. This method combined a multi-stage attention module and a recurrent neural network (RNN) to model the cross-influence of meteorological factors and atmospheric pollutants on PM2.5 concentration. Statistical analysis of the absolute error values of the prediction results of Beijing, Shanghai, and Guangzhou showed the following results:1) compared with the widely used support vector machine (SVM), long short-term memory (LSTM), and multilayer perceptron (MLP), the performance of the proposed method increased more than 10%. 2) compared with the latest fusion model U-net, the proposed STAN still achieved a decrease in the error of 7%. Taking Beijing's winter forecast results as an example for statistical analysis, the fitting coefficient between the predicted value of STAN and the measured value could reach 95.2%. In the robustness analysis, it was found that the error increased by only 9.3% when the proposed method ran on data with 10% noise. The above results proved that the combination of the attention mechanism and the temporal learning module could deeply mine the change law of PM2.5 and suppress noise data. It also showed that the STAN could achieve the robust prediction of PM2.5 concentration.
-
[1] 张西雅,扈海波.基于多源数据的北京地区PM2.5暴露风险评估[J].北京大学学报(自然科学版),2018,54(5):1103-1113. [2] CHAK K C, YAO X H. Air pollution in mega cities in China[J]. Atmospheric Environment,2008,42(1):1-12. [3] 顾芳婷,胡敏,王渝,等.北京2009-2010年冬、春季PM2.5污染特征[J].中国环境科学, 2016,36(9):2578-2584. [4] 陈熙勐,张皓旻,顾万清,等.我国PM2.5主要成分及对人体健康危害研究进展[J].中华保健医学杂志,2019,21(1):83-85. [5] 于淼,郭立群,李秋爽,等.PM2.5暴露下皮肤损伤评价方法研究进展[J].环境与职业医学,2019,36(9):869-873,878. [6] 段肖肖,刘思秀.PM2.5致病机制的研究进展[J].复旦学报(医学版),2020,47(4):605-614. [7] 吴少伟, 邓芙蓉.大气PM2.5与健康:从暴露、危害到干预的系统研究进展[J].中国药理学与毒理学杂志, 2016, 30(8):797-801. [8] 王庚辰, 王普才.中国PM污染现状及其对人体健康的危害[J]. 科技导报, 2014,32(26):72-78. [9] KIM Y, MANLEY J, RADOIAS V. Medium-and long-term consequences of pollution on labor supply:evidence from Indonesia[J]. IZA Journal of Labor Economics, 2017,6(1):5. [10] BRAITHWAITE I, ZHANG S, KIRKBRIDE J B,et al.Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk:a systematic review and meta-analysis[J]. Environmental Health Perspectives,2019, 127(12):126002. [11] KAN H D, CHEN R J, TONG S L. Ambient air pollution, climate change, and population health in China[J].Environment International,2012, 42:10-19. [12] 陈波,鲁绍伟,李少宁.北京城市森林不同天气状况下PM2.5浓度变化[J]. 生态学报, 2016,36(5):1391-1399. [13] 王晓飞,王波,陆玉玉,等.基于Prophet-LSTM模型的PM2.5浓度预测研究[J].软件导刊,2020,19(3):133-136. [14] 王黎明,吴香华,赵天良,等.基于距离相关系数和支持向量机回归的PM2.5浓度滚动统计预报方案[J].环境科学学报,2017, 37(4):1268-1276. [15] 李建新,刘小生,刘静,等.基于MRMR-HK-SVM模型的PM2.5浓度预测[J].中国环境科学,2019,39(6):2304-2310. [16] 陈菊芬,李勇.基于多模态支持向量回归的PM2.5浓度预测[J].环境工程,2019,37(1):122-126,34. [17] 宋国君,国潇丹,杨啸,等.沈阳市PM2.5浓度ARIMA-SVM组合预测研究[J].中国环境科学,2018,38(11):4031-4039. [18] 赵文芳,林润生,唐伟,等.基于深度学习的PM2.5短期预测模型[J].南京师大学报(自然科学版),2019,42(3):32-41. [19] 黄婕,张丰,杜震洪,等.基于RNN-CNN集成深度学习模型的PM2.5小时浓度预测[J].浙江大学学报(理学版),2019,46(3):370-379. [20] 鲍艳磊,田冰,胡引翠,等.基于混合效应模型的京津冀地区PM2.5数值模拟[J].环境污染与防治,2020,42(3):268-274. [21] 黄俊,王超群,周宝琴,等.广州PM2.5污染特征及与气象因子的关系分析[J].环境污染与防治,2020,42(2):176-181,186. [22] 李定,张文生.面向群体行为识别的注意力池化机制[J].中国科学:信息科学,2021,51(3):399-412. [23] 徐少伟,秦品乐,曾建朝,等.基于注意力机制的两阶段纵膈淋巴结自动分割算法[J].计算机应用,2021,41(2):556-562. [24] 郭旭超,唐詹,刁磊,等.基于部首嵌入和注意力机制的病虫害命名实体识别[J].农业机械学报,2020,51(增刊2):335-343. [25] SANTOS C, MING T, BING X, et al. Attentive pooling networks[J]. 2016. [26] WILLIAMS R J,ZIPSER D.A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1998,1(2). [27] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012,3(4):212-223. [28] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [29] RUCK D W,ROGERS S K,KABRISKY M,et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant function[J]. IEEE transactions on neural networks,1990,1(4):296-298. [30] 史晓涛,刘建丽,骆玉荣. 一种抗噪音的支持向量机学习方法[C]//全国第19届计算机技术与应用(CACIS)学术会议论文集(下册),2008:5.
点击查看大图
计量
- 文章访问数: 168
- HTML全文浏览量: 13
- PDF下载量: 9
- 被引次数: 0