CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行流送风对侧吸排风罩烟气捕集效率的提升

谢春波 权梦凡 曹智翔 王怡 孙建新 王旭

谢春波, 权梦凡, 曹智翔, 王怡, 孙建新, 王旭. 平行流送风对侧吸排风罩烟气捕集效率的提升[J]. 环境工程, 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014
引用本文: 谢春波, 权梦凡, 曹智翔, 王怡, 孙建新, 王旭. 平行流送风对侧吸排风罩烟气捕集效率的提升[J]. 环境工程, 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014
XIE Chun-bo, QUAN Meng-fan, CAO Zhi-xiang, WANG Yi, SUN Jian-xin, WANG Xu. IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014
Citation: XIE Chun-bo, QUAN Meng-fan, CAO Zhi-xiang, WANG Yi, SUN Jian-xin, WANG Xu. IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014

平行流送风对侧吸排风罩烟气捕集效率的提升

doi: 10.13205/j.hjgc.202110014
基金项目: 

十三五国家重点研发计划课题"高污染散发类工业建筑环境保障与节能关键技术研究"(2018YFC0705302);国家自然科学基金青年项目"工业车间内涡旋通风的流动机理及设计方法研究"(51908446);陕西省教育厅协同创新项目"基于能量转换分析的局部通风新模式研究与工程试验"(20JY035)。

详细信息
    作者简介:

    谢春波(1996-),女,硕士,主要研究方向为平行流吹吸式通风。1669429703@qq.com

    通讯作者:

    曹智翔(1990-),男,讲师,主要研究方向为工业建筑高效通风技术。caozx@xauat.edu.cn

IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR

  • 摘要: 在实际工程中,由于排风罩直接与除尘系统相连接,排风罩的大小及流量一经确定后不易更改,且当实际排风量相比设计排风量小很多时,采用传统的设计方法很难得到最优设计参数。因此,如何在排风罩形式及流量确定的情况下合理设计送风口的大小及流量具有很强的现实意义。采用数值模拟的方法,对比研究了不同形式的侧吸排风罩对高温烟气的捕集情况,在此基础上增加送风口,在保证排风流量不变的情况下,对比了不同送风流量对烟气控制效果的影响特性。此外,研究了不同送风末端装置下污染物的捕集效果。结果显示:1)相较于一般侧吸排风罩,采用移动式侧吸排风罩和旋转开闭侧吸排风罩可在一定程度上提高高温烟气的捕集效率,捕集效率最大可提高53%。2)对于通风系统的排风流量确定的情况下,应保证送风气流能将污染物有效输送至排风口处,调整送排风流量比,确定排风量受限情况下最佳送排风流量比,实现烟气捕集效率的提升。3)增设平行流送风装置可最大程度提高送风气流均匀度,从而提高排风罩的烟气捕集效率。研究结论可对实际吹吸式通风装置的改造及设计提供参考。
  • [1] 刘大钧. 基于实测的铅锌冶炼业环境防护距离研究[D]. 合肥:合肥工业大学,2015.
    [2] HUANG Y Q, WANG Y, LIU L, et al. Performance of constant exhaust ventilation for removal of transient high-temperature contaminated airflows and ventilation-performance comparison between two local exhaust hoods[J]. Energy and Buildings, 2017, 154:207-216.
    [3] HAMA G M. Supply and exhaust ventilation for metal pickling operations[J]. Air Condition, Heat and Ventilation, 1957, 54:61-63.
    [4] CHEM M J, MA, C H. Numerical investigation and recommendations for push-pull ventilation systems[J]. Journal of Occupational and Environmental Hygiene, 2007, 4:184-197.
    [5] MARZAL F, GONZALES E, MINANA A, et al. Influence of push element geometry on the capture efficiency of push-pull ventilation systems in surface Treatment Tanks[J]. The Annals of Occupational Hygiene, 2008, 28:405-411.
    [6] LIU L, DAI J, YANG J, et al. Intelligent simulation experimental study on influence of air velocity of air supply hood and exhaust hood with vertical push-pull ventilation[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(4):4819-4826.
    [7] WU X, LIU L D, LUO X W, et al. Study on flow field characteristics of the 90° rectangular elbow in the exhaust hood of a uniform push-pull ventilation device[J]. International Journal of Environmental Research and Public Health, 2018, 15(12).
    [8] WANG Y, ZOU Y, YANG Y, et al. Movement and control of evaporating droplets released from an open surface tank in the push-pull ventilation system[J]. Building Simulation, 2016, 9(4):443-457.
    [9] CAO Y X, WANG Y, LI C C. A field measurement study of a parallel flow push pull system for industrial ventilation applications[J]. International Journal of Ventilation, 2016, 15:167-181.
    [10] WANG Y, QUAN M F, ZHOU Y, et al. Experimental study on the flow field and economic characteristics of parallel push-pull ventilation system[J]. Energy and Built Environment, 2020, 1:393-403.
    [11] HAYASHI T. Industrial ventilation[M]. Beijing:China Architecture and Building Press, 1986.
    [12] GOODFELLOW H, THTI E. Industrial ventilation design guidebook[M]. Canada:Academic Press, 2001.
    [13] YE X, KANG Y M, YANG F, et al. Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode[J]. Building and Environment, 2019, 160:106159.
    [14] BATCHELOR G K. An Introduction to Fluid Dynamics[M]. UK:Cambridge, 2000.
    [15] ROUAUD O, HAVET M. Computation of the airflow in a pilot scale clean environment using k-ε turbulence models[J]. International Journal of Refrigeration, 2002, 25:351-361.
    [16] 王福军.计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
    [17] ZHOU Y, WANG M Y, WANG Y, et al. Development of self-label method to distinguish supply air from ambient air without tracer in numerical simulations[J]. Building and Environment, 2018, 145:223-233.
    [18] MACLNNES M, BRACCO F V. Stochastic particle dispersion modeling and the tracer particle limit[J]. Physics of Fluids, 1992, 4:2809-2824.
    [19] DUAN M J, WANG Y, GAO D, et al. Modeling dispersion mode of high-temperature particles transiently produced from industrial processes[J]. Building and Environment, 2017, 126:457-470.
    [20] 孙一坚. 简明通风设计手册[M]. 北京:中国建筑工业出版社, 1997.
  • 加载中
计量
  • 文章访问数:  175
  • HTML全文浏览量:  34
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回